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ABSTRACT 

We study and explain the uncertainty principle. We've discussed how to reform the uncertainty 
principle. In this regards, we have used the mechanisms of noncommutative algebra for obtain a generalized 
uncertainty principle. Following, Due to modified relationship uncertainty, we consider some application of 
these relation. 
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1.  CLASSICAL UNCERTAINTY RELATIONS  
 

We consider a wave as 1 siny y kx= . This wave continues from x = −∞ to x = +∞ , 
consistently. The position of this wave can not be determined precisely, but its wavelength is 

precisely determined and we get: 2
k
πλ = [1] . 

If we want to use the wave in order to show a particle, its position must precisely be determined. 
In fact the wave must be localized. Or could be limited in analmost short area of the space .Now if we 
add another wave with a different wavelength to the initial wave , these two waves act together and 
we get to the conjunction of waves.      

In this case another wave would be produced, that it would continues consistently again from 
x = −∞ to x = +∞ , but we can determine its position more with details , because in some positions 
wave's wavelength is different. In fact beat occurs because of conjunction of waves .  

Consequently the possibility of storm increases for some numbers of x. 
So we would have more information about wave's position, but as a result of adding two 

wavelengths, the initial wavelength is not accurately defined. 
 
Now if we add more waves with different wavelengths and accurate amplitudes and phases, so 

we'll have a wave which practically has no amplitude outside of an almost narrow area of the space. 
According to this purpose we have added many waves with different wavelengths, ik , so the wave 
would be a demonstration of the average of wave numbers (or wave lengths) shownas k∆ . When we 
have only a single wave, 0k∆ = , and x∆ is unspecified, by increasing k∆ , x∆ decreases; it means 
the wave becomes more limited. So there is a contrary relation between k∆ and x∆ ; a relation such 
as 
 

1x k∆ ∆ >                                                  1-1 
 
It means x∆ times k∆ is of the order of one. So the position of any kind of waves can only be 

determined by decreasing the accuracy of measuring its wavelength.The 1-1 relation is the first 
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classical uncertainty relation for classical waves. Yang's experiment is one of reversal examplesof the 
ability to measure the place and wavelength in the same time. In a way that weather we can find out 
which gap the wave has crossed through, or to measure crossed photons. Now if we want to use 

eq.(1-1) uncertainty relation for dobro wave; the fundamental relation of dobroi is as : hp
λ

=  , using 

2
hh
π

= and 
2
hkp
π

=  we get :   

  pk
h
∆

∆ =


                                                                               2-1                       

So using eq. (1-1) uncertainty relation we get;     x p h∆ ∆ >                           3-1 
Eq. (3-1) is Heisenberg uncertainty relation. 

Indeed it's the mathematical present of Heisenberg uncertainty principle which states that; it's 
impossible to determine the position and momentum of a particle,simultaneously. 

The Heisenberg Energy _ time uncertainty principle is considered as: 
 

                       E t h∆ ∆ >                                                   4-1 
 
and states that it's impossible to determine the energy and the coordinate of the time of a particle, 
simultaneously. 
 
 
2.  UNCERTAINTY PRINCIPLES 
 

There are observables that have compatible Eigen states, (i.e. Hermitian operators, A and B 
with [A,B] = 0 commutator.). These are commuting observables because of their commuting relation, 
for example if we consider A and B (Hermitian operators) with [A,B] = 0, they have compatible Eigen 
states and so a determinate state of A might also be a determinate state of B. But does this always 
come true? 

We know that operators such as x, p, H do not commute, so we can conclude that measuring one 
thing doesn't always denote to the measuring of any thing else. Although sometimes it happens. So we 
can determinate the uncertainty principles in such measurementexperimentally, that these principles 
would be built in mathematical formulation. We only can measure transition from one state into 
another. The different states of a system cannot be measured even though they ever existed.  
 
2. 1. Uncertainty Relations  
 

We want to relate variances to the commutativity relations between two operators. Weconsider 
the operator Q∆ . Q Q Q∆ ≡ − . Then the variance of Q would be as 〈(ΔQ)2〉 defined below [2]:  

 
22 2 2 2( ) ( )Q Q Q Q Q Q Q Q Q∆ = − − + = −                               2-1      

 
 

We consider two Hermitian operators P and Q .And then we define operator P Q∆ ∆ that could 
be written as; 
 

[ ] { }1 1, ,
2 2

P Q P Q P Q∆ ∆ = ∆ ∆ + ∆ ∆                                               2-2      
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Since Pand Q are Hermitian their commutator is anti-Hermitian, and their anti-commutator is 
Hermitian.                   

 

Now we consider the expectation value of P Q∆ ∆  

[ ] { }1 1, ,
2 2

P Q P Q P Q∆ ∆ = ∆ ∆ + ∆ ∆                                         2-3   

 
 
Now we know that Hermitian operators have real expectation values, and anti-Hermitian 

operators have imaginary values. So the expectation value of [ ],P Q commutator is imaginary and 

the expectation value, then the right hand side of eq. (2-3) could be considered asu iv+ . So the 
magnitude squared of both sides gives: 
 

[ ] { }
2 22 1 1, ,

4 4
P Q P Q P Q∆ ∆ = +                                         2-4 

 
Using Schwarzinequality, we get; 
{Schwarz inequality:

2
,a b a a b b a b∀ ⇒ ≥ }     

 
We assume   a P x= ∆     and    b Q x= ∆  ,      
 
Then 

[ ] { }
2 222 2 22 2 1 1( ) ( ) , ,

4 4
a a b b P x x Q x x P Q P Q P Q P Q P Q= ∆ ∆ = ∆ ∆ ≥ ∆ ∆ = ∆ ∆ = +    2-5 

The term on the left side is; 2 2
P Qσ σ , (if the variance of p that we considered as P∆ is equals to 

Pσ and the variance of Q we considered as Q∆ is equals to Qσ ) so we get:      

[ ]
22 2 1 ,

4P Q P Qσ σ ≥                                                                      2-6     

 
Since both terms on the right side of eq. (2-5) are positive, dropping the anti-commutator only 

strengthens the inequality, so it could be denied. 
This gives us a limit on the variance of the P or Qoperator. Now if [ ], 0P Q =  ,the two 

Hermitian operators commute with each other and determined states are shared, it means that we can 
measure property P and Qsimultaneously. 

The commentator relation between x and p is considered as: [ ],x P i=  So we can write the 
position – momentum uncertainty relation as: 

2
2 2

4 2x P x P
h hσ σ σ σ≥ → ≥
                                                                2-7  

This relation is supposed to hold for any state. We consider the example of harmonic oscillator 
as for checking out validity of the eq. (2-7) 
We got the variance of x for the Eigen state n :     

2 (2 1)
2x
n
m

σ
ω
+

=
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The variance of the momentum operator is considered as; 

             ( )
2P
mP i a aωσ + −= = −
  

So we get; 

2 2 2 ( ) (2 1)
2 2 2
m m mn P n n a a a a a a n n a a n n a a n nω ω ω

+ + − − + − + − − += − − − + = + = +
  

 

 

Then:                     
2 2

2 2 (2 1)
4x P
nσ σ +

=
                                             2-8   

 
and for 0n = , the ground state, we actually achieve the lower band that we see it consists with the 
basic position – momentum uncertainty relation. In classical mechanics, the time derivative of a 
function ( , , )J x p t  could be written as;   

[ ],dJ JJ H
dt t

∂
= +

∂
                                                                       2-9    

The definition of the Poisson bracket is considered as; 

 

[ ], H J J HH J
x P x Pα α

α α

∂ ∂ ∂ ∂
= −
∂ ∂ ∂ ∂

                                                           2-10    

 
and the Hamiltonian equations of motion: 
 

HP
xα α

∂
= −

∂

 Hx
P

α

α

∂
=
∂

                                                                 2-11 

 

So the total time derivative is; 

 

[ ],dJ J J J J H J H J Jx P J H
dt x P t x P P x t t

α
αα α α

α α α

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + = − + = +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂



                 2-12  

 
This relation is used, when J is not explicitly a function of time. Consider an operator 

ˆ ( , , )Q x p t  then the total time derivative of its expectation value is [3]: 
 

ˆˆ ˆ ˆd QQ Q Q
dt t

ψ ψ ψ ψ ψ ψ ψ ψ∂
= + +

∂
                                    2-13    

 

with  d
dt

ψ ψ≡ . 

 
We know from Schrodinger's equation, that    
    

di H i H
dt

ψ ψ ψ ψ= ⇒ − = 〉
 

                                                   2-14 
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So inputting this into the total time derivative of Q gives;  
 

ˆ ˆ1 1 1ˆ ˆ ˆ ˆˆ ˆ ˆ,d Q QQ HQ QH Q H
dt i t i i t

ψ ψ ψ ψ ψ ψ∂ ∂ = − + + = + ∂ ∂  

                      2-15   

 
This result can be used to calculate the time-dependence, in particular, if we take Q = p, we 

recover Ehrenfest's theorem. Now, we consider the relation (2-15), considering the original 
uncertainty principle and that we know there is no explicit time – dependence and with   

ˆˆ &P H Q Q= =   
 

[ ]
2

222 2
ˆ1 ,

4 4H Q

d Q
H Q

dt
σ σ ≥ =

                                                    2-16   

 
 
In fact we define a deviation as; 
 

ˆ ˆ ˆ

2 2

ˆ

H H H Q H

Q

d Q d Q d Q
t t t

dt dt dt

d Q
t

dt

σ σ σ σ σ

σ

∆ = → ∆ = → ∆ =

∆ =

 

                        2-17  

So ∆t is a natural time scale induced by the measurement properties of the operator ˆ ( , )Q x p . If 
we refer to the standard deviation of the Hamiltonian as  
 

∆E.
2
hE t∆ ∆ ≥
                                                                    2-18. 

 
This is called the "energy-time" uncertainty relation. It relates the spread in energy to the time. 

 
 
 
 
 
3.  THE ALGEBRAIC STRUCTURE OF THE GENERALIZED UNCERTAINTY  
    PRINCIPLE    
 

Measurements in quantum gravity are controlled by a generalized uncertainty principle [4]. 
 

.hx cst G P
P

∆ ≥ + ∆
∆
                                                                 3-1  

 
(G is Newton's constant). At energies much below the Planck mass MPL the extra term in 

eq.(1-4) is irrelevant and the Heisenberg relation is recovered. It is responsible for the existence of a 
minimal observable length on the order of the Planck length. 
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The result (1-4) was first suggested in the context of string theory in the kinematical region 
where 2GE is smaller than the string length. However, heuristic arguments suggest that this formula 
might have a more general validity in quantumgravity, and it is not necessarily related to strings. It is 
there for natural to ask whether there is an algebraic structure which reproduces eq. (1-4). (Or more in 
general which reproduces the existence of a minimal observable length). So to obtain generalized 
uncertainty relations we define a new algebra.  The commutator [x, p] = ih controls the algebra used 
in obtaining Heisenberg uncertainty principle. But with this commutator relation the extra term in eq. 
(1-4) won't be reproduced; so we look forward an algebra which produces this extra term. So we need 
deformated algebra because eq. (1-4) would not recover by using the mentioned algebra. 

 
Deformated algebra is an associative algebra where it is defined a commutator which is 

non-linear in the elements of the algebra; and there is a deformation parameter such that, in an 
appropriate limit, a Lie algebra is recovered. We therefor look for the most general deformed algebra 
which can be constructed from coordinates xi and momenta pi(I = 1,2,3). We restrict making the 
following assumptions. 
 
1. The three dimensional rotation group is not deformed; the angular momentum J satisfies the 
undeformed SU(2) commutation relations, and coordinate and momenta satisfy the undeformed 
commutation relations: , & ,i j ijk k i j ijk kJ P i P J x i xε ε   = =     
 
 
2. The momenta commutes between themselves: , 0i jP P  =   
So that also the transition group is not deformed. 
 
 
3. The [x,x] and [ x,p] commutators depend on a deformation parameter k with dimensions of mass. In 
the limit k→∞ (that is,k much larger than any energy), the canonical commutation relations are 
recovered. The commutator between x's is non-zero. If k~Planck mass the non-commutativity shows 
up only at the levels of the Plancklength.With these assumptions, the most general form of the 
κ-deformed algebra is; 

2

2

( ),i j ijk k
a Ex x i Jε
k

  = 
                                                                3-2  

, ( )i j ijx P i f Eδ  =                                                                      3-3    
 

Here a (E) and f (E ) are real, dimensionless  functions of E/k, and E2 = p2 + m2; the angular 
momentum J is defined as dimensionless, so on the right hand side the dimensions are carried by   
and k only. The fact that this is the most general form compatible with our assumptions is clear from 
the following considerations: the factors of iare determined by the condition of hermiticity of xi,pi and 
Ji. The tensor εijk in eq. (3-2) appears because we assume that the three dimensional rotation group is 
undeformed and then it is the only tensor antisymmetric in i, j.   

 
A term proportional to xipj-xjpimight also be added to the right hand side of eq. (3-2). In the 

second equation, again δij must appear because it is the only available tensor under rotation. In order 
to recover the undeformed limit, we further require that f(0) = 1 and that a (E ) is less singular than 
E-2as E→0. We neglect the possibility that the functions a,f depend on also other scalars like x2or x.p 
.            

Of course the form of functions a(E ), f(E ) is severely restricted by the Jacobi identities. We 
consider first the Jacobi identity; 
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, , 0i j kx x x cyclic   + =    . Using [ ], ( ) i
i

Px E i f E
E

=  , and  

[ ], ( ) ( )( )i
i

P dax a E i f E
E dE

=     we get :        . 0da P J
dE

=                           3-4    

  
Since the Jacobi identity must be satisfied independently of the particular representation of the 

algebra, that is independently of wether the condition p. J = 0 holds or not, we conclude that a(E ) = 
constant. with a redefinition of k we can set this constant to ±1 .          

 
The Jacobi identity , , 0i j kx x P cyclic   + =    gives  

   

2

( ) 1f E df
E dE k

=                                                                     3-5    

 
where the negative and positive signs correspond to the choice a = +1(-1). Since f(0) = 1, eq.  

(3-5) gives ; 
12
2

2( ) (1 ( ))Ef E
k

=                                                      3-6 

All other Jacobi identities are automatically satisfied. So  

i) there exists a solution: we can have a deformated algebra that it turns to Heisenberg algebra 
under limited conditions. 

ii) Thesolution is unique .(within our assumptions)     
 
Now we only consider the positive sign and rewrite the k-deformed Heisenberg algebra as: 

2

2,i j ijk kx x i Jε
k

  = − 


                                                                3-7 

12
2

2, (1 )i j ij
Ex p i δ
k

  = +                                                                3-8    

The generalized uncertainty principle is derived from eq.(8-4) as;     
  

12
2

2(1 )
2i j ij

Ex P δ
k

∆ ∆ ≥ +
                                                            3-9     

Expanding the square root in powers of (E/k)2 and using 2 2 2( )P P P= + ∆  where 
2 2( ) (P )P P∆ = −  , at first order we obtain;   
    

2 2

2

( )(1 )
2 2i j ij

E Px P δ
k

+ ∆
∆ ∆ ≥ +

                                                      3-10    

 
 
(1+E2/k2) could be considered as a function named f and the generalized uncertainty principle 
simplifies as;   
   

x
2i j ijp fδ∆ ∆ ≥
                                                                 3-11     
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4.  AN APPLICATION OF THE GENERALIZED UNCERTAINTY PRINCIPLE   
(The generalized uncertainty principle and black holeremnants) 

Small black holes are believed to emit blackbody radiation at the Hawking temperature, at least 
until they approach Plancksize. A small black hole should emit black body radiation, there by 
becoming lighter and hotter, and so on, leading on to an explosive end when the mass approaches 
zero. Does a small black hole evaporate entirely to photons and other ordinary particles and vacuum, 
or would something be left behind, which we refer to as a remnant [5-35]. 

 
Since there is no evident symmetry or quantum number preventing it, a black hole should 

radiate entirely away to photons and other ordinary stable particles and vacuum, just like any unstable 
quantumsystem. The total collapse of a black hole may be prevented by dynamics, and not by 
symmetry. Just as we may consider the hydrogen atom to be prevented from collapse by the 
uncertainty principle. The generalized uncertainty principle may prevent a black hole from complete 
evaporation. The uncertainty principle argument for the stability of the hydrogen atom can be stated 
very briefly. The energy of the electron is p2/2m-e2/r , so the classical minimum energy is very large 
and negative, since p = r = 0 , the result is not compatible with the uncertainty principle.  

 

If we assume that hP
r

=
 we see that;

2 2

22
h eE

mr r
= −
 thus 

42

min min2 2&
2

h mer E
me

= = −




which 

means the energy has a minimum. 
 
The (GUP) gives the position uncertainty as  
   

2
3&p P

h P Gx L L
P h c

∆
∆ ≥ + =

∆
 



                                                     4-1  

     
 
This is a result of string theory or more general considerations of quantum mechanics and 

gravity. The usual Heisenberg argument leads to an electron position uncertainty given by the first 
term of 4-1. But we should add to this a term due to the gravitational interaction of the electron with 
photon, and that term must be proportional to G times the photon energy, or Gpc.  
Since the electron momentum uncertainty ∆p will be of the order of p, we see that on dimensional 
grounds the extra term must be of order G∆p/c3, as given in 4-1.   

 
The position uncertainty has a minimum value of ∆x = 2Lp, so the Planck distance plays the role 

of a minimum or fundamental distance.But the generalized uncertainty principle may prevent a black 
hole from complete evaporation. One of the applications of the generalized uncertainty principle is 
that using this we may get to the Hawking temperature of a spherically symmetric black hole or its 
general properties. There is quantumvacuum around a black hole, which meas that a fluctuating sea of 
virtual particles, near the surface of a black hole the effective potential energy can negate the rest 
energy of a particle, and the surface itself is a one-way membrane which can swallow particles.  

 
The net effect is that for a pair of photons one photon may be absorbed by the black hole with 

effective negative energy –E, and the other may be emitted to asymptotic distances with positive 
energy +E . The characteristic energy E of the emitted photons may be estimated from the standard 
uncertainty principle. In the vicinity of the black hole surface there is an intrinsic uncertainty in the 
position of any particle of about the Schwarzschildradius, rs, due to the behavior of its field lines. So 
the momentum uncertainty would be as; 
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2

2

2&
2 4 s

s

h h c GMP x r
x r GM c

∆ ≈ = = ∆ = =
∆
  

                                                 4-2    

 

and the energy uncertainty is 
3

4
cpc

GM
∆ =

                                                4-3 

  
This is the energy of the emitted photon. and the Hawking temperature would be as; 
 

 
2 33

,
8 8

P
H P

M cc cT M
GM M Gπ π

= = =
                                                           4-4      

 
 
we show that the emitted photons should have a thermal black body spectrum. From (4-1) we solve 
for the momentum uncertainty in terms of the distance uncertainty. This gives the following 
momentum and temperature for radiated photons; 
 

2

2 2

41 1
2

P

P

LP x
h L x

 ∆ ∆
= − 

∆  




                                                              4-5  

 
22

21 1
4

P
GUP

MMcT
Mπ

 
= − 

  
                                                              4-5        

 
 
5.  CONCLUSIONS 
 

We shown that a deformation of the algebra commutator (base of physics effects) which 
depends on a dimensionful parameter lead to the generalized uncertainty principle in quantum 
gravity. We know that the deformed algebra and therefore the form of the generalized uncertainty 
principle are fixed uniquely by rather simple assumptions. In this regard, we can use this mechanism 
for study other physics subjects such as Black hole. 
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