Paper Titles in Periodical
International Letters of Chemistry, Physics and Astronomy
Volume 38

Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 38 > Quantitative Support for Convergence of Intrinsic...
< Back to Volume

Quantitative Support for Convergence of Intrinsic Energies from Applied Magnetic Fields and “Noise” Fluctuations of Newton’s Gravitational Value within the Human Brain

Full Text PDF

Abstract:

When the energy within the mass of the human brain that is associated with the intrinsic range in fluctuations of the Gravitational Constant (G) is set equal to the energy from a magnetic field (B) within the cerebral volume and solved for B, a value in the order of 20 to 50 nT is obtained. Quantitative Electroencephalographic (QEEG) and sLORETA (Low Resolution Electromagnetic Tomography) analyses of cerebral cortical activity during exposure to a range of applied rotating, frequency-modulated, transcerebral (between the two temporal lobes) magnetic fields between < 1 nT and 7000 nT while volunteers sat within a darkened, quiet chamber were completed. There was marked enhancement of power within the 4 Hz to 10 Hz band within the right caudal (cuneus) hemisphere while the ~5 to 20 nT averaged strength magnetic fields were applied but no significant responses at lesser or greater intensities. These results suggest that a physical process coupled to the source of the fluctuation (~10-15 m3·kg-1·s-2) in G may interact with right hemispheric activity within the range at which gravity waves have been estimated to interact with Schumann frequencies generated between the earth and ionosphere.

Info:

Periodical:
International Letters of Chemistry, Physics and Astronomy (Volume 38)
Pages:
181-190
Citation:
M. A. Persinger and K. S. Saroka, "Quantitative Support for Convergence of Intrinsic Energies from Applied Magnetic Fields and “Noise” Fluctuations of Newton’s Gravitational Value within the Human Brain", International Letters of Chemistry, Physics and Astronomy, Vol. 38, pp. 181-190, 2014
Online since:
September 2014
Export:
Distribution:
References:

[1] M. A. Persinger, B. T. Dotta, K. S. Saroka, M. A. Scott, Journal of Consciousness Exploration & Research 4 (2013) 1-24.

[2] S. Redfield, J. Linsky, Astrophysics Journal 583 (2008) 283-314.

[3] M. A. Persinger, International Letters of Chemistry, Physics and Astronomy 11 (2014) 24-32.

[4] H. L. Koenig, A. P. Krueger, S. Lang, W. Sonning, Biologic Effects of Environmental Electromagnetism. Springer-Verlag, New York, (1981).

[5] M. A. Persinger, Current Medicinal Chemistry 17 (2010) 3094-3098.

[6] M. A. Persinger, L. S. St-Pierre, International Journal of Geosciences 5 (2014) 450-452.

[7] M. A. Persinger, International Journal of Astronomy and Astrophysics 4 (2014) 178-180.

[8] D. A. E. Vares, M. A. Persinger, Journal of Non-Locality 2013, Number 2. http: /journals. sfu. ca/nonlocality/inded. php/nonlocality/article/view/41/39.

[9] B. M. Vladimirskii, Biophysics 40 (1995) 915-923.

[10] A. A. Minakov, A. P. Nikolaenko, L. M. Rabinovich, Radiofizika 35 (1992) 488-497.

[11] B. T. Dotta, K. S. Saroka, M. A. Persinger, Neuroscience Letters 516 (2012) 54-56.

[12] K. S. Saroka, M. A. Persinger, Epilepsy and Behavior 28 (2013) 395-407.

[13] M. A. Persinger, K. S. Saroka, Journal of Electromagnetic Analysis and Applications 5 (2013) 151-155.

[14] L. J. Martin, S. A. Koren, M. A. Persinger, Pharmacology, Biochemistry and Behavior 78 (2004) 217-277.

[15] N. M. Murugan, M. A. Persinger, International Journal of Radiation Biology.

[16] R. D. Pascual-Marqui, Methods In Experimental Clinical Pharmacology 24 (2002) 5-12.

[17] M. Cifra, J. Z. Fields, A. Farhadi, Progress in Biophysics and Molecular Biology 105 (2011) 233-246.

[18] T. Dahoun, S. Eliez, F. Chen, D. Badard, M. S. Schneider, F. Laroi, M. Debbane, Frontiers in Human Neuroscience 7 (2013) 329-339.

[19] R. A. Lanius, P. S. Williamson, R. L. Bluhn, M. Densmore, K. Boksman, R. W.J. Neufeld, J. S. Gati, R. S. Menon, Biological Psychiatry 57 (2005) 873-884.

DOI: https://doi.org/10.1016/j.biopsych.2005.01.011

[20] D. C. Parantie, J. Wu, J. M. Koller, A. Lim, S. L. Warren, K. Black, M. Sadler, N. H. White, T. Hershey, Diabetes Care 30 (2007) 2331-2337.

[21] S. Dehaene, N. Tzourio, V. Frak, L. Raynaud, L. Cohen, J. Mehler, B. Mazoyear, Neuropsychologica 34 (1996) 1097-1106.

[22] M. A. Scott, M. A. Persinger, Journal of Signal and Information Processing 4 (2013) 282-287.

[23] M. A. Persinger, International Letters of Chemistry, Physics and Astronomy 2 (2014) 1-10.

[24] M. N. Murugan, L.M. Karbowski, M. A. Persinger, Water 6 (2014) 45-60. ( Received 20 August 2014; accepted 02 September 2014 ).

Show More Hide
Cited By:

[1] M. Persinger, L. St-Pierre, K. Saroka, "LORETA predicts electromagnetic sensitivity and “hearing voices” in a predictable, increasingly prevalent subpopulation: possible QEEG-based differential diagnosis", Neuropsychiatric Electrophysiology, Vol. 1, 2015

DOI: https://doi.org/10.1186/s40810-015-0007-7

[2] M. Persinger, B. Dotta, D. Vares, S. Koren, "Shifts in Photon Spectral Power Densities within Schumann (7.7 to 7.8 Hz) Values in Microtubules during Complex Magnetic Field Exposures May Reflect an Information Interface with Universal Energies", Open Journal of Biophysics, Vol. 05, p. 84, 2015

DOI: https://doi.org/10.4236/ojbiphy.2015.53008