Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 37 > Connective Eccentric Index of an Infinite Family...
< Back to Volume

Connective Eccentric Index of an Infinite Family of Linear Polycene Parallelogram Benzenoid

Full Text PDF

Abstract:

Let G=(V, E) be a graph, where V(G) is a non-empty set of vertices and E(G) is a set of edges.We defined dv denote the degree of vertex v∈V(G). The Eccentric Connectivity index ξ(G) and theConnective Eccentric index Cξ(G) of graph G are defined as ξ(G)= ∑ v∈V(G)dv x ξ(v) and Cξ(G)=ξ(G)= ∑ v∈V(G)dv x ξ(v)- where ε(v) is defined as the length of a maximal path connecting a vertex v toanother vertex of G. In this present paper, we compute these Eccentric indices for an infinite family oflinear polycene parallelogram benzenod by a new method.Keywords: Molecular graphs; Linear polycene parallelogram; Benzenoid; Eccentric connectivityindex; Connective eccentric index

Info:

Periodical:
International Letters of Chemistry, Physics and Astronomy (Volume 37)
Pages:
57-62
DOI:
10.18052/www.scipress.com/ILCPA.37.57
Citation:
M. R. Farahani "Connective Eccentric Index of an Infinite Family of Linear Polycene Parallelogram Benzenoid", International Letters of Chemistry, Physics and Astronomy, Vol. 37, pp. 57-62, 2014
Online since:
Aug 2014
Export:
Distribution:
References:

H. Wiener, J. Am. Chem. Soc. 69(1) (1947) 17-20.

I. Gutman, N. Trinajstić, Chem. Phys. Lett. 17 (1972) 535-538.

R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Weinheim, WileyVCH, (2000).

V. Sharma, R. Goswami, A. K. Madan, J. Chem. Inf. Comput. Sci. 37 (1997) 273-282.

S. Alikhani, M. A. Iranmanesh. Digest. J. Nanomater. Bios. 6(1) (2011) 253-257.

A. R. Ashrafi, M. Ghorbani, M. Hemmasi. Digest. J. Nanomater. Bios. 4(3) (2009) 483-486.

A. R. Ashrafi, M. Ghorbani, M. Jalali, Optoelectron. Adv. Mater. -Rapid Comm. 3 (2009) 823-826.

H. Dureja, A. K. Madan, Med. Chem. Res. 16 (2007) 331-341.

M. Fischermann, A. Homann, D. Rautenbach, L. A. Szekely, L. Volkmann, Discrete Appl. Math. 122 (2002) 127-137.

M. Ghorbani, M. Ghazi, Digest. J. Nanomater. Bios. 5(4) (2010) 1107-1111.

I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, SpringerVerlag, New York, (1986). M.A. Johnson, G.M. Maggiora. Concepts and Applications of Molecular Similarity, Wiley Interscience, New York, (1990).

V. Kumar, S. Sardana, A. K. Madan, J. Mol. Model 10 (2004) 399-407.

S. Sardana, A. K. Madan, MATCH Commun. Math. Comput. Chem. 43 (2001) 85-89.

Z. Yar Ahmadi, Iran. J. Math. Chem. 1(2) (2010) 105-110.

M. Alaeiyan, R. Mojarad, J. Asadpour, Optoelectron. Adv. Mater. -Rapid Commun. 5(7) (2011) 761-763.

S. Gupta, M. Singh, A. K. Madan, J. Mol. Graph. Model. 18 (2000) 18-25.

S. Gupta, M. Singh, A. K. Madan, J. Math. Anal. Appl. 266 (2002) 259-268.

P. V. Khadikar, Iranian Journal of Mathematical Chemistry 1(1) (2010) 7-42.

M. Alaeiyan, J. Asadpour, Optoelectron. Adv. Mater. -Rapid Commun. 6(1-2) (2012) 191-193.

Mohammad Reza Farahani, International Letters of Chemistry, Physics and Astronomy 11(1) (2014) 74-80.

Mohammad Reza Farahani, International Letters of Chemistry, Physics and Astronomy 12 (2014) 56-62.

Mohammad Reza Farahani, International Letters of Chemistry, Physics and Astronomy 12 (2014) 63-68.

Mohammad Reza Farahani, International Letters of Chemistry, Physics and Astronomy 13(1) (2014) 1-10.

Mohammad Reza Farahani, International Letters of Chemistry, Physics and Astronomy 17(2) (2014) 201-206. ( Received 20 July 2014; accepted 30 July 2014 ).

Show More Hide