Operationally complete representation of work done and the corresponding to it potential energy within the usual radial/center-bound, nonrotating gravitational force fields comprises two extra terms: linear nonradial and angular nonradial, in addition to the usual radial term. Since these nonradial terms have negative signs, they suggest presence of potentials corresponding to repulsive forces generated by the very same, usual radial attractive force field. The extra linear nonradial term depends on exposure of an orbiting satellite to the distribution of mass within the field, whereas the extra angular nonradial term also depends on that as well as on exposure of the satellite to density of matter of the mass source that generates the usual, locally dominant radial/center-bound attractive gravitational force field.

Periodical:

International Letters of Chemistry, Physics and Astronomy (Volume 37)

Pages:

16-30

Citation:

J. Czajko "Operationally Complete Work Done Suggests Presence of Extra Potentials Corresponding to Repulsive Forces", International Letters of Chemistry, Physics and Astronomy, Vol. 37, pp. 16-30, 2014

Online since:

August 2014

Authors:

Distribution:

Open Access

This work is licensed under a

Creative Commons Attribution 4.0 International License

References:

Jeffreys H., Jeffreys B., Methods of mathematical physics. Cambridge: Cambridge Univ. Press, 2001, p.202.

Licis N.A., Philosophical and scientific meaning of ideas of N.I. Lobachevskii. Riga, 1976, p.58, 372 [in Russian].

Hughes R.J., Contemp. Phys. 1993 34 177-91.

Riemann B., Schwere, Elektricitӓt und Magnetismus. Hannover: Carl Rümpler, 1876, p. 9ff.

Gutzwiller M.C., Chaos in classical and quantum mechanics. New York: Springer, 1990, p.101.

Kasner E., De Cicco J., PNAS USA 38 (1952) 145-148.

Einstein A., The Foundations of the General Theory of Relativity. [pp.111-164 in: H.A. Lorentz et al. The principle of relativity. Dover, New York 1923, see p.161].

Sokolnikoff I.S., Sokolnikoff E.S., Higher mathematics for engineers and physicists. New York: McGraw-Hill, 1941, p.218.

Czajko J., Stud. Math. Sci. 7(2) (2013) 25-39.

Czajko J., Chaos, Solit. Fract. 11 (2000) 2001-(2016).

Czajko J., Appl. Phys. Res. 3(1) (2011) 2-7.

Czajko J, Stud. Math. Sci. 7(2) (2013) 40-54.

Czajko J., Chaos Solit. Fract. 20 (2004) 683-700.

Birkhoff G. (Ed. ) A source book in classical analysis. Cambridge, MA: Harvard Univ. Press, 1973, p.335, 360.

Czajko J., International Letters of Chemistry, Physics and Astronomy 17(2) (2014) 220-235.

Bers L., Calculus I. New York: Holt, Rinehart and Winston, 1967, p. 216f.

Czajko J., International Letters of Chemistry, Physics and Astronomy 11(2) (2014) 89-105.

Rylov Yu.A., Sov. Phys. Dokl. 7(6) (1962) 536-538.

Mercier A., Analytical and canonical formalism in physics. Amsterdam: North-Holland, 1959, p.122.

Mercier A., Speculative remarks on physics in general and relativity in particular.

Chow T.L., Classical Mechanics. New York: Wiley, 1995, p.35.

Goldstein H., Poole C., Safko J., Classical mechanics. San Francisco: Addison-Wesley, 2002, p. 4ff.

Doran C., Lasenby A., Gul S., Found. Phys. 23(9) (1993) 1175-1201, see p.1186.

Czajko J., Chaos, Solit. Fract. 21 (2004) 261-271.

Czajko J., Chaos, Solit. Fract. 21 (2004) 501-512.

Geroch R., General relativity from A to B. Chicago: The Univ. of Chicago Press, 1978, p.166, 171.

O"Neill B., Semi-Riemannian geometry with applications to relativity. New York: Academic Press, 1983, p.171.

Czajko J., Chaos, Solit. Fract. 11 (2000) 1983-1992. ( Received 12 July 2014; accepted 22 July 2014 ).