Paper Titles in Periodical
International Letters of Chemistry, Physics and Astronomy
ILCPA Volume 36

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > ILCPA Volume 36 > The Cancer Cell Plasma Membrane Potentials as...
< Back to Volume

The Cancer Cell Plasma Membrane Potentials as Energetic Equivalents to Astrophysical Properties

Full Text PDF


The primary physical and chemical parameters that define the hypopolarized plasma cell membrane of malignant (cancer) cells compared to non-malignant cells reflect universal characteristics. The median value for the resting membrane potential is the constant for the Nernst equation without reference to discrepancies in ion concentrations and is identical to Boltzmann energies at 37 °C. The threshold energy defining space-time converges with access to entropic processes that are reflected in the morphology of cancer cells and tumors. Slowing of growth in cancer cell lines but not normal cells following exposure to weak (~1 to 10 μT) patterned magnetic fields occurs when the energy induced within the cell corresponds to the energy equivalent of the hypopolarized membrane potential. The optimal temporal parameters for the efficacy of these fields can be derived from Hubble‟s parameter and the transform function for “noise” or “random” patterns within the system. Quantitative solutions and experimental data indicate that the cancer cell may be dominated by entropic process that can be attenuated or blocked by temporally-structured applied magnetic fields whose intensity matches the increment of energy associated with this threshold.


International Letters of Chemistry, Physics and Astronomy (Volume 36)
M. A. Persinger and R. M. Lafrenie, "The Cancer Cell Plasma Membrane Potentials as Energetic Equivalents to Astrophysical Properties", International Letters of Chemistry, Physics and Astronomy, Vol. 36, pp. 67-77, 2014
Online since:
July 2014

J. W. Woodbury, in T. C. Ruch, H. D. Patton, J. W. Woodbury, A. L. Towe (eds), Neurophysiology, W. B. Saunders, Philadelphia, 1968, 1-25.

M. Yang, W. J. Brackenbury, Frontiers in Physiology 4 (2013) 1-10.

M. Levin, BioEssays 34(3) (2012) 205-217.

C. D. Cone, Oncology 24 (1970) 438-470.

C. Buckner, Effects of Electromagnetic Fields on Biological Processes are Spatial and Temporal Dependent, Ph.D. Thesis Biomolecular Sciences, Laurentian University, Sudbury, (2011).

H. Froelich, International Journal of Quantum Chemistry 2 (1968) 641-649.

L. T. Grodsky, Mathematical and Biological Sciences 28 (1976) 191-219.

W. R. Adey, S. M. Bawin, Neurosciences Research Program Bulletin 15 (1977) 1-129.

T. A. Litowitz, M. Penafiel, D. Krause, D. Zhang, J. M. Mullins, Bioelectromagnetics 18 (1997) 388-395.

M. Yang, D. J. Kozminski, L. A. Wold, R. Modak, J. D. Calhoun, L. L. Isom, W. J. Brackenbury, Breast Cancer Research Treatments 134 (2012) 603-615.

S. P. Fraser, J. K. Diss, A-M. Chioni, et al, Clinical Cancer Research 11 (2005) 5381-5389.

T. Ochalek, F. J. Nordt, K. Tullberg, M. M. Burger, Cancer Research 48 (1988) 5124-5128.

N. J. Murugan, L. M. Karbowski, M. A. Persinger, Water 6 (2014) 45-60.

G. Woodbury, Physical Chemistry, Brooks/Cole Publishing Co, Pacific Grove, (1997).

B. Albert, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular biology of the cell, Gs Garland Science, N. Y, (2002).

M. Bizzarii, A. Pasqualato, A. Cucina, V. Pasta, Histology and Histopathology 28 (2013) 155-174.

M. A. Persinger, Journal of Physics, Astrophysics and Physical Cosmology 3 (2009) 1-3.

L-C Tu, J. Luo, G. T Gillies, Reports on Progress in Physics 68 (2005) 77-130.

M. A. Persinger, S. A. Koren, International Journal of Neuroscience 117 (2007) 157-175.

S. A. Koren, B. T. Dotta, M. A. Persinger, The Open Astronomy Journal 7 (2104) 1-6.

S. M. Highstein, G. R. Holstein, M. A. Mann, R. D. Rabbit, PNAS Early Edition, 2014, www. pnas. org/cgi/doi/10. 1073/pnas. 1319561111.

M. Bordag, U. Mohideen, V. M. Mostepanenko, Physics Reports 353 (2001) 1-205.

M. A. Persinger, Neuroscience and Biobehavioral Rev 36 (2012) 2334-2338.

M. Cifra, J. Z. Fields, A. Farhadi, Progress in Biophysics and Molecular Biology 105 (2011) 223-246.

B. T. Dotta, R. M. Lafrenie, L. M. Karbowski, M. A. Persinger, General Physiology and Biophyics 33 (2014) 63-73.

B. T. Dotta, M. A. Persinger, Journal of Biophysical Chemistry 3 (2012) 72-80.

M. Levin, BioSystems 109 (2012) 243-261. ( Received 24 May 2014; accepted 06 June 2014 ).

Show More Hide
Cited By:

[1] M. Persinger, B. Dotta, D. Vares, S. Koren, "Shifts in Photon Spectral Power Densities within Schumann (7.7 to 7.8 Hz) Values in Microtubules during Complex Magnetic Field Exposures May Reflect an Information Interface with Universal Energies", Open Journal of Biophysics, Vol. 05, p. 84, 2015


[2] C. Buckner, A. Buckner, S. Koren, M. Persinger, R. Lafrenie, "The effects of electromagnetic fields on B16-BL6 cells are dependent on their spatial and temporal character", Bioelectromagnetics, Vol. 38, p. 165, 2017


[3] L. Ochoo, C. Migwi, J. Okumu, "Important parameters for optimized metal nanoparticles-aided electromagnetic field (EMF) effect on cancer", Cancer Nanotechnology, Vol. 9, 2018


[4] X. Li, F. Yang, B. Rubinsky, "A Theoretical Study on the Biophysical Mechanisms by Which Tumor Treating Fields Affect Tumor Cells During Mitosis", IEEE Transactions on Biomedical Engineering, Vol. 67, p. 2594, 2020


[5] X. Li, F. Yang, B. Rubinsky, "A Correlation Between Electric Fields That Target the Cell Membrane Potential and Dividing HeLa Cancer Cell Growth Inhibition", IEEE Transactions on Biomedical Engineering, Vol. 68, p. 1951, 2021


[6] E. Jenkins, A. Finch, M. Gerigk, I. Triantis, C. Watts, G. Malliaras, "Electrotherapies for Glioblastoma", Advanced Science, p. 2100978, 2021

Show More Hide