Paper Titles in Periodical
International Letters of Chemistry, Physics and Astronomy
Volume 32


Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 32 > Static Quenching of Ruthenium(II)-Polypyridyl...
< Back to Volume

Static Quenching of Ruthenium(II)-Polypyridyl Complexes by Gallic Acid and Quercetin in Aqueous and Micellar Media

Full Text PDF


The reactions of gallic acid and quercetin with the excited state Ru(II) complexes proceed through photoinduced electron transfer reaction in sodium dodecyl sulfate (SDS) and aqueous media at pH 11 and has been studied by luminescence quenching technique. The static nature of quenching is confirmed from the ground state absorption studies in both the media. The observed quenching rate constant (kq) values are sensitive to the nature of the ligand, medium and the structure of the quenchers. The electrostatic interaction of the cationic complexes with the anionic micelle reduces the kq values in SDS compared to that in aqueous medium.


International Letters of Chemistry, Physics and Astronomy (Volume 32)
D. Sheeba and G. A. G. Raj, "Static Quenching of Ruthenium(II)-Polypyridyl Complexes by Gallic Acid and Quercetin in Aqueous and Micellar Media", International Letters of Chemistry, Physics and Astronomy, Vol. 32, pp. 21-31, 2014
Online since:
Apr 2014

A. M. O. Brett, M. E. Ghica, Electroanalysis 15 (2003) 1745-1750.

M. H. V. Huynh, T. J. Meyer, Chem. Rev. 107 (2007) 5004-5064.

C. J. P. Monteiro, et al., Photochem. Photobiol. Sci. 4 (2005) 617-624.

A. Altamirano, A. Senz, H. E. Gsponer, J. Colloid. Interface Sci. 270 (2004) 364-370.

P. Thanasekaran, J. Y. Wu, B. Manimaran, T. Rajendran, I. J. Chang, S. Rajagopal, G. H. Lee, S. M. Peng, K. L. Lu, J. Phys. Chem. A 111 (2007) 10953-10960.

W. Scott, M. R. Mark, Anal. Chem. 72 (2000) 5556-5561.

M. Grätzel, Inorg. Chem. 44 (2005) 6841-6851.

G. J. Meyer, Inorg. Chem. 44 (2005) 6852-6864.

A. Jain, W. Xu, J. N. Demas, B. A. DeGraff, Inorg. Chem. 37 (1998) 1876-1879.

W. J. Dressick, J. Cline, J. N. Demas, B. A. DeGraff, J. Am. Chem. Soc. 108 (1986) 7567-7574.

S. W. Synder, D. E. Raines, P. T. Rieger, J. N. Demas, B. A. Degraff, Langmuir 1 (1985) 548-552.

F. H. Quina, E. A. Lissi, Acc. Chem. Res. 37 (2004) 703-710.

M. I. Gutiérrez, C. G. Martínez, D. García-Fresnadillo, A. M. Castro, G. Orellana, A. M. Braun, E. Oliveros, J. Phys. Chem. A 107 (2003) 3397-3403.

T. Chakraborty, S. Ghosh, S. P. Moulik, J. Phys. Chem. B 109 (2005) 14813-14823.

L. Onel, N. J. Buurma, J. Phys. Chem. B 115 (2011) 13199-13211.

B. Saha, D. M. Stanbury, Inorg. Chem. 39 (2000) 1294-1300.

T. Rajendran, S. Rajagopal, C. Srinivasan, P. Ramamurthy, J. Chem. Soc. Faraday Trans. 93 (1997) 3155-3160.

P. Ramamurthy, Chem. Educ. 9 (1993) 56-60.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd edn. Springer Press, New York, (2006).

K. Kalyanasundaram, Photochemistry of polypyridine and porphyrin complexes. Academic Press, London, (1992).

M. Can, E. Bulut, M. Ozacar, Ind. Eng. Chem. Res. 51 (2012) 6052-6063.

P. Trouillas, P. Marsal, D. Siri, R. Lazzaroni, J. L. Duroux, Food Chem. 97 (2006) 679688.

C. S. Harris, F. Mo, L. Migahed, L. Chepelev, P. S. Haddad, J. S. Wright, W. G. Willmore, J. T. Arnason, S. A .L. Bennett, Can. J. Physiol. Pharmacol. 85 (2007) 1124-1138.

A. Mohd, K. Haruo, S. Shiro, J. Anal. Appl. Pyrolysis 92 (2011) 76-87. ( Received 28 March 2014; accepted 08 April 2014 ).

Show More Hide