Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 28 > Reflection of Surface Spin Waves from the...
< Back to Volume

Reflection of Surface Spin Waves from the Interface of Uniaxial and Biaxial Ferromagnets in a Planar Magnetic Field

Full Text PDF

Abstract:

The article investigates the process of reflection of surface spin waves passing through the interface of uniaxial and biaxial ferromagnets in a planar external magnetic field directed along the hard axis of ferromagnet. The problem is solved using the spin density formalism and the Landau-Lifshitz equations for the case of the absence of dissipation in the system. Geometrical optics formalism is used to describe the processes of refraction of surface spin waves propagating in the ferromagnetic medium with non uniform distribution of magnetic parameters. Quantum mechanical approach is used for calculation of the amplitudes of reflected and transmitted waves. It is shown that spin wave birefringence phenomenon appears at the interface of two uniform ferromagnetic components. Frequency and field dependencies of reflection coefficients for different branches of spin waves are obtained in the study. It is shown that it is possible to change the “optical” parameters of the system by only changing a magnitude of the external homogeneous magnetic field. It is also shown that reflection amplitude depends heavily on the angle of incidence.

Info:

Periodical:
International Letters of Chemistry, Physics and Astronomy (Volume 28)
Pages:
71-83
Citation:
S.O. Reshetnyak et al., "Reflection of Surface Spin Waves from the Interface of Uniaxial and Biaxial Ferromagnets in a Planar Magnetic Field", International Letters of Chemistry, Physics and Astronomy, Vol. 28, pp. 71-83, 2014
Online since:
Feb 2014
Export:
Distribution:
References:

J. Y. Gan, F. C. Zhang, Z. B. Su., Physical Review B 67(14) (2003) 4427.

M. Buchmeier, B. K. Kuanr, R. R. Gareev, D. E. Bürgler, P. Grünberg, Physical Review B 67 (2003) 4404.

J. Fransson, E. Holmström, O. Eriksson, I. Sandalov, Physical Review B 67 (2003) 5310.

V. P. Antropov, Journal of Magnetism and Magnetic Materials 262 (2003) 192-197.

Yu. I. Gorobets, S. A. Reshetnyak, Technical Physics 43 (1998) 188-191.

S. A. Reshetnyak, Physics of the Solid State 46 (2004) 1061-1067.

V. G. Bar'yakhtar, Yu. I, Gorobets: Bubble domains and their lattices, Naukova dumka, Kyiv, (1988).

A. I. Akhiezer, V. G. Bar'yakhtar, S. V. Peletminski, Spin waves, Nauka, Moscow, (1967).

A. Khitun, M. Q. Bao, K. L. Wang, J. Phys. D: Appl. Phys. 43 (2010) 264005.

T. Schneider, A. A. Serga, B. Leven, B. Hillebrands, R. L. Stamps, M. P. Kostylev, Appl. Phys. Lett. 92 (2008) 022505.

T. Schneider, A. A. Serga, T. Neumann, B. Hillebrands, Phys. Rev. B 77 (2008) 214411.

A. A. Serga, M. P. Kostylev, B. Hillebrands, Phys. Rev. Lett. 101 (2008) 137204.

A. V. Chumak, A. A. Serga, B. Hillebrands, Phys. Rev. B 79 (2009) 014405.

T. Neumann, A. A. Serga, B. Hillebrands, M. P. Kostylev, Appl. Phys. Lett. 94 (2009) 042503.

A. Eshenfelder: Magnetic bubble technology, Springer-Verlag, New York, (1980).

N. -T. H. Kim-Ngan, G. Jagło, D. Sitko, W. Soszka, International Letters of Chemistry, Physics and Astronomy 2 (2013) 1-10.

Mukul Chandra Das, Rampada Misra, International Letters of Chemistry, Physics and Astronomy 9(1) (2013) 13-16. ( Received 07 February 2014; accepted 14 February 2014 ).

Show More Hide