Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 24 > Ca-Modified Co/SBA-15 Catalysts for Hydrogen...
< Back to Volume

Ca-Modified Co/SBA-15 Catalysts for Hydrogen Production through Ethanol Steam Reforming

Full Text PDF


Hydrogen production through steam reforming of ethanol (SRE) over the Ca-modified Co/SBA-15 catalysts was studied herein to evaluate the catalytic activity, stability and the behavior of coke deposition. The Ca-modified SBA-15 supports were prepared from the Ca(NO3)2·4H2O (10 wt%) which was incorporated to SBA-15 by incipient wetness impregnation (assigned as Ca/SBA-15) and direct hydrothermal (assigned as Ca-SBA-15) method. The active cobalt species from the Co(NO3)2·6H2O (10 wt%) was loaded to SiO2, SBA-15 and modified-SBA-15 supports with incipient wetness impregnation method to obtain the cobalt catalysts (named as Co/SiO2, Co/SBA-15, Co-Ca/SBA-15 and Co/Ca-SBA-15, respectively). The prepared catalysts were characterized by using X-ray diffraction (XRD), temperature programmed reduction (TPR), transmission electron microscopy (TEM) and BET. The catalytic performance of the SRE reaction was evaluated in a fixed-bed reactor. The results indicated that the Co/Ca-SBA-15 catalyst was preferential among these catalysts and the ethanol can be converted completely at 375 °C. The hydrogen yield (YH2) approached 4.76 at 500 °C and less coke deposited. Further, the long-term stability test of this catalyst approached 100 h at 500 °C and did not deactivate.


International Letters of Chemistry, Physics and Astronomy (Volume 24)
C.-B. Wang et al., "Ca-Modified Co/SBA-15 Catalysts for Hydrogen Production through Ethanol Steam Reforming", International Letters of Chemistry, Physics and Astronomy, Vol. 24, pp. 1-16, 2014
Online since:
Dec 2013

M. C. Batista, R. K. S. Santos, E. M. Assaf, J. M. Assaf, E. A. Ticianelli, Journal of Power Sources 134 (2004) 27-32.

D. K. Liguras, D. I. Kondarides, X. E. Verykios, Applied Catalysis B: Environmental 43 (2003) 345-354.

G. Maggio, S. Freni, S. Cavallaro, Journal of Power Sources 74 (1998) 17-23.

L. F. Brown, International Journal of Hydrogen Energy 26 (2001) 381-397.

J. Llorca, N. Homs, J. Sales, P. Ramirez de la Piscina, Journal of Catalysis 209 (2002) 306-317.

A. Haryanto, S. Femando, N. Murali, S. Adhikari, Energy & Fuels 19 (2005) 2098-2106.

P. K. Cheekatamarla, C. M. Finnerty, Journal of Power Sources 160 (2006) 490-499.

C. B. Wang, C. C. Lee, J. L. Bi, J. Y. Siang, J. Y. Liu, C. T. Yeh, Catalysis Today 146 (2009) 76-81.

J. Y. Siang, C. C. Lee, C. H. Wang, W. T. Wang, C. Y. Deng, C. T. Yeh, C. B. Wang, International Journal of Hydrogen Energy 35 (2010) 3456-3462.

S. W. Liu, J.Y. Liu, Y.H. Liu, Y.H. Huang, C.T. Yeh, C.B. Wang, Catalysis Today 164 (2011) 246-250.

F. Haga, T. Nakajima, H. Miya, S. Mishima, Catalysis Letters 48 (1997) 223-227.

J. Llorca, P. Ramirez de la Piscina, J. A. Dalmon, J. Sales, N. Homs, Applied Catalysis B: Environmental 43 (2003) 355-369.

J. M. Pigos, C. J. Brooks, G. Jacobs, B. H. Davis, Applied Catalysis A: General 328 (2007) 14-26.

C. H. Wang, K. F. Ho, J. Y. Z. Chiou, C. L. Lee, S. Y . Yang, C. T. Yeh, C. B. Wang, Catalysis Communications 12 (2011) 854-858.

Z. Cheng, Q. Wu, J. Li, Q. Zhu, Catalysis Today 30 (1996) 147-155.

D. H. Olson, G. T. Kokotailo, S. L. Lawton, W. M. Meler, The Journal of Physical Chemistry 85 (1981) 2238-2243.

C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature 359 (1992) 710-712.

D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science 279 (1998) 548-552.

A. J. Vizcaíno, A. Carrero, J. A. Calles, International Journal of Hydrogen Energy 32 (2007) 1450-1461.

A. Carrero, J. A. Calles, A. J. Vizcaíno, Applied Catalysis A: General 327 (2007) 82-94.

A. J. Vizcaíno, A. Carrero, J. A. Calles, Catalysis Today 146 (2009) 63-70.

J. A. Calles, A. Carrero, A. J. Vizcaíno, Microporous and Mesoporous Materials 119 (2009) 200-207.

A. Carrero, J. A. Calles, A. J. Vizcaino, Chemical Engineering Journal 163 (2010) 395-402.

K. Wang, X. Li, S. Ji, X. Shi, J. Tang, Energy & Fuels 23 (2009) 25-31.

H. Wang, Y. Liu, L. Wang, Y. Qin, Chemical Engineering Journal 145 (2008) 25-31.

H. P. Klug, L. E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, Wiley, New York, (1962).

S. R. Bohlen, A. L. Boettcher, Geophysical Research Letters 8 (1981) 575-578.

C. B. Wang, C. W. Tang, H. C. Tsai, S. H. Chien, Catalysis Letters 107 (2006) 223-230.

M. Mamak, N. Coombs, G. Ozin, Advanced Materials, 12 (2000) 198-202.

P. Bera, S. Mitra, S. Sampath, M. S. Hegde, Chemical Communications 10 (2001) 9 27-928.

T. Takeguchi, S.N. Furukawa, M. Inoue, Journal of Catalysis 202 (2001) 14-24.

M. Domok, M. Toth, J. Rasko, A. Erdohelyi, Applied Catalysis B: Environmental 69 (2007) 262-272.

C. W. Tang, C. C. Kuo, M. C. Kuo, C. B. Wang, S. H. Chien, Applied Catalysis A: General 309 (2006) 37-43.

H. Song, U. S. Ozkan, Journal of Catalysis 261 (2009) 66-74.

R. M. Navarro, M. A. Pena, J. L. G. Fierro, Chemical Reviews 107 (2007) 3952-3991.

L. S. Carvalho, A. R. Martins, P. Reyes, M. Oportus, A. Albonoz, V. Vicentini, M. C. Rangel, Catalysis Today 142 (2009) 52-60.

I. Suelves, M. J. Lázaro, R. Moliner, B. M. Corbella, J. M. Palacios, International Journal of Hydrogen Energy 30 (2005) 1555-1567. (Received 28 November 2013; accepted 03 December 2013).

Show More Hide