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ABSTRACT  

The paper aims to present the main objectives for using magnetic fields to improve process of 
electropolishing (EP), firstly by focusing on materials and electrochemical systems. The general 
introduction has been concerned on the sample surface treated under pseudopassivity conditions, in the 
process generally known as magnetoelectropolishing (MEP). Long-term up-to-date experiments have 
shown profound changes observed on metals and alloys. The advantageous effects gained by applying 
MEP to metals and alloys cover: improvement of corrosion resistance, bio- and haemocompatibility, 
roughness by modification of their surfaces. The improvements are also referred to the mechanical 
properties of metals and alloys treated by MEP namely: removal of hydrogen, fatigue resistance 
enhancement, etc. Further developments and the effects of magnetic fields on electropolishing of 
metals and alloys are to be presented in the next publications. 
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1.  INTRODUCTION  

 

The influence of magnetic field on  electropolishing (EP) was first revealed in the 
Authors’ works referred to metallic implants [1-4]. The US patent was released [4] and the 
process was named the magnetoelectropolishing (MEP). Early works, with the first recorded 
interest [5] in the effects of magnetic field on electrolyte solutions, were begun in the 20th 
century. The studies were followed by a large number of researchers [6-13] who have 
contributed to this complex and challenging field. The studies were primarily focused on 
relating an apparent electrolyte resistivity to the strength of imposed magnetic fields [6]. 

Concerning the electrolyte solution viscosity, the existence of a local minimum at an 
intermediate magnetic field strength has been shown for the viscosity of water. The variation 
of viscosity with magnetic field strength cannot, however, be predicted from the fundamental 
relationships of physics [6, 10, 11]. Though the thermodynamics of magnetic systems have a 
solid theoretical foundation, there is little information available on the variation of 
equilibrium composition in electrolytes with the magnetic field strength. If the data for ionic 
equilibria in electrolyte solutions were readily available, the current understanding of 
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magnetic field effects would be significantly enhanced [6]. Up-to date studies on the magnetic 
field effects covered mainly cathode deposits with a little reference to the anodic dissolution 
[12, 13]. It is known that ions in solution are either paramagnetic, i.e. they develop a magnetic 
moment parallel to an imposed magnetic field, or diamagnetic, meaning the developed 
magnetic moment is opposed to the imposed magnetic field. The magnetic force tends to repel 
diamagnetic ions in a non-homogeneous magnetic field from the strong-field region, the latter 
attracting, in a relative sense, paramagnetic ions. Interestingly, no place in the literature is 
devoted to ferromagnetic ions, assuming their low importance or little meaning. While 
susceptibility effects are of a small magnitude, they can generate ionic movement (ion 
separation) under carefully designed experimental conditions. It has been underlined that the 
smallness of the susceptibility effect is evident with the equilibrium constant carrying a 
magnetic correction term of a 10–5 order of magnitude [6]. 

Now, instead of focusing much attention to the solution effect and investigating the 
inter-electrode gap, the direct effects obtained on anode or workpiece surface after MEP are 
researched [14-51]. The aim of the works is to present changes in the surface film formed on 
the sample surface treated under pseudopassivity conditions, in the process generally known 
as electropolishing in the presence of a constant magnetic field (MEP). Long-term up-to-date 
experiments have shown profound changes observed on metals and alloys. 

In this paper, a sort of introduction to materials and electrochemical systems is to be 
performed. Further developments and the effects of magnetic fields on electropolishing of 
metals and alloys are to be presented in the next publications. 
 
 
2.  MATERIALS  

 
The main purpose of using the magnetoelectroplishing MEP was to modify surfaces of 

metallic parts and devices to be used for implants. Therefore not a traditional change in 
surface roughness after the MEP process, in comparison with that one attained after a standard 
electropolishing EP, should be the reason for applying the magnetic fields [2, 3]. The main 
advantages are the novel passive layers with the essential modification in the composition of 
surface film formed. Increased corrosion resistance and improved biocompatibility are 
expected to be obtained after MEP [14-35, 38-48]. The question arises which metals and 
alloys should be treated by MEP. 

The up-to-date Authors’ MEP studies covered the following materials (Fig. 1): 

 austenitic AISI 304 and 304L stainless steels [30, 47, 51] 
 austenitic AISI 316 and 316L stainless steels [14, 17-19, 22-24, 27-29, 32, 39, 40, 45, 

47, 48] 
 duplex LDX 2101 steel [45, 48] 
 ferritic AISI 430 steel [37, 48] 
 high alloy 4H13 steel [38] 
 carbon steel C45 [48, 49] 
 Co-Cr alloy known as M-605 [16] 
 Niobium [42-44] 
 Tantalum [1, 2] 
 CP Titanium Grade 2 [1, 2, 20, 26, 31, 33-35, 47, 49] 
 Nitinol (NiTi alloy) [1-3, 15, 20, 34, 35, 47, 49, 50]  
 other titanium alloys (TNZ) and Ti2448 (under investigation). 
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Fig. 1. Examples of samples used for the studies: (a) AISI 316L stainless steel ϕ 10×1 mm, (b) AISI 
316L stainless steel ϕ 20×2 mm, (c) stripes/plates CP Ti Grade 2, (d) titanium blocks, (e)   Nitinol 

endodontic files – new tools AR, (d) used/broken file. 

(a) (b) 

(c) (d) 

(e) (f) 
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Most of them are paramagnetic but 430, 4H13, and C45 are ferromagnetic materials [37, 
38, 48]. The preliminary studies indicate that ferromagnetic materials should not be treated by 
MEP due to worsening the surface properties obtained  after the process [48]. The samples 
used for the studies were in the form of discs (stainless steels – see Fig. 1 a, b), rectangular 
plates or blocks (austenitic stainless steels, ferritic and carbon steels, titanium – see Fig. 1 c, 
d), wires (Nitinol), tubes (Nitinol, austenitic AISI 304L steel), or endodontic tools (see Fig. 1 
e, f). 
 
 
3.  ELECTROCHEMICAL SYSTEMS 

 
The experiments on the materials were performed both under a standard 

electropolishing process in still electrolyte (EP), with a moderate mixing (MIX), and/or in the 
presence of a constant magnetic field in the process named magnetoelectropolishing (MEP). 
The main purpose was to modify chemical, physical, and mechanical properties of treated 
material and compare the results obtained. Both as-received (AR) and/or mechanically 
polished (MP) samples were used for reference. For the experiments, two kinds of magnets 
were used: flat disc magnets presented in Fig. 2 as-mounted, and/or ring magnets, presented 
below.  
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 M 

 
 

Fig. 2. Electrochemical cell with a flat magnet M used: A – anode, C – cathode. Magnetic field 
intensity marked by a blue line. 

 

 

The main characteristics of the flat magnets used is given in Fig. 3, with consecutive 
levels of the magnetic field intensity B, mT, dependent on the distance x, mm, counted from the 
surface of the magnet and taken under consideration in our studies. Levels presented in Fig. 3 
correspond with the  field intensity studied [48]. This way, by choosing  each of the levels, an 
optimum of the magnetic field intensity could be investigated.  
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Fig. 3. Levels of the magnetic field intensity B, mT, dependent on the distance x, mm, from the flat 
magnet surface. 
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Fig. 4. Electrochemical cell with ring magnets M used:  A – anode, C – cathode. Magnetic field 
intensity marked by a blue line. 

    
 

Some of the samples were treated in the electrochemical system presented in Fig. 4. 
Ring magnets were used for the MEP process with the magnetic field intensity as-measured in 
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the middle of the cylindrical cell equal to about 100 mT. The relative change in the magnetic 
field intensity is shown by a blue curve (see Figs. 2 and 4).  

Our up-to-date research works have shown the influence of the MEP process on many 
mechanical properties [1-3, 20, 21, 26, 31, 39, 41, 45-47], increase in corrosion resistance 
[14-21, 24-26, 30, 32, 45, 46, 48-50], decrease in hydrogenation [28, 33], improvement in 
biocompatibility [1, 3, 14-16, 18-21, 26, 34, 46] of metallic materials used in medicine. 
Besides, the new electrolytes have been developed to electropolishing of titanium, tantalum, 
and cobalt alloys [1-4], niobium [42-44]. The new theory “enhanced oxidation-dissolution 
theory” was proposed to amend the most recognized Hoar theory of electropolishing [35, 52-
54]. To develop our experiments carried out at high current density and high-rate 
electrochemical conditions under increased temperatures, the new reference electrode was 
applied with the characteristics presented in Fig. 5. For this purpose, the stainless steel 
electrode was proved to be useful (see the characteristics of mercury-mercurious sulfate 
electrode MSE against austenitic 316L stainless steel electrode, Fig. 5) [48].  

 

 
 

Fig. 5. The comparison of reference electrodes characteristics: MSE against AISI 316L SS (R2 is a 
coefficient of  determination). 

 
 
It should be stressed out the helpfulness and indispensability of using the advanced 

instrumental techniques  such as AES (Auger Electron Spectroscopy), and XPS (X-ray 
Photoelectron Spectroscopy) to analyze the samples’ most outer layer – the oxide film which 
physicochemical properties are of paramount significance to the metallic material 
performance. The view on an XPS apparatus used for the study of surface film formed after 
EP and MEP is shown in Fig. 6. 
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Fig. 6. View on XPS instrument used for the study of surface film formed after EP and MEP. 
 

 

4.  CONCLUSION  

 

In one of the works [6] on the role of magnetic fields in electrochemical systems one 
may read: “In spite of the continual growth of information on multifaceted phenomena in 
electrolytic systems under the influence of magnetic fields, the exact role of magnetism in 
modifying microscopic as well as macroscopic behavior is not completely understood.” The 
Authors of this paper totally agree with this statement and will try to  contribute more work in 
the direction of better understanding of the influence of applied magnetic field on the 
electrolysis process specially dissolution phenomenon. 
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