Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 23 > Effect of Annealing Temperature on the Optical...
< Back to Volume

Effect of Annealing Temperature on the Optical Properties of ZnO Nanoparticles

Full Text PDF


In this work, ZnO films were prepared by drop casting technique. The films were deposited on quartz substrates under different annealing time (15, 30, 45 and 60 min.) at a constant temperature (800 °C). The optical properties were achieved by measuring the absorbance and transmittance spectra in the wavelength range (200-900) nm. It was found that the absorbance decreases while transmission increases as the annealing time increases, while the reflectance decreases as the annealing time increases. The optical measurements indicate the kind of transition which was a direct allowed with an average band gap energies lie between 3.3 eV and 3.54 eV with the change of annealing time.


International Letters of Chemistry, Physics and Astronomy (Volume 23)
R. A. Ismail et al., "Effect of Annealing Temperature on the Optical Properties of ZnO Nanoparticles", International Letters of Chemistry, Physics and Astronomy, Vol. 23, pp. 37-47, 2014
Online since:
Nov 2013

Zhong Lin Wang, Journal of Physics: Condensed Matter. 16 (2004) 829.

Zhiyong Fan, Jia G. Lu, Journal of Nanoscience and Nanotechnology 5(10) (2005) 1561.

S. Baruah, J. Dutta, Hydrothermal growth of ZnO nanostructures, Sci. Technol. Adv. Mater. 10(1) (2009).

Dapeng Wu, Zhengyu Bai, Kai Jiang, Materials Letters 63 (2009) 1057.

Chen Z., Z. Shan, S. Li, C. B. Liang, S. X. Mao, J. Cryst. Growth. 265 (2004) 482.

Sekar A., S. H. Kim, A. Umar, Y. B. Hahn, J. Cryst. Growth. 277 (2005) 471.

B. P. Zhang, N. T. Binh, Y. Segawa, Y. Kashiwaba, K. Haga, Appl. Phys. Lett. 84 (2004) 586.

Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, S.Q. Feng, Appl. Phys. Lett. 78 (2001) 407.

Y. J. Xing, et al., Appl. Phys. Lett. 83 (2003) 1689.

W. I. Park, G. -C. Yi, M. Y. Kim, S. J. Pennycook, Adv. Mater. 15 (2003) 526.

L. Guo, S. Yang, C. Yang, P. Yu, Appl. Phys. Lett. 76 (2000) 2901.

K. Haga, F. Katahira, H. Watanabe, Thin Solid Films 343 (1999) 145.

K. Ogata, T. Kawanishi, K. Maejimaz, K. Sakurai, S. Fujita, Jpn. J. Appl. Phys. 7A (2001) 240.

S. A. Studenikin, N. Golego, M. Cocivera, J. Appl. Phys. 84 (1998) 2287.

W. Li, et al., Surf. Coat. Technol. 346 (2000) 128.

Y. Sun, G. M. Fuge, M. N. R. Ashfold, Chem. Phys. Lett. 396 (2004) 21.

W. Chiou,W. Wu, J. Ting, Diamond Relat. Mater. 12 (2003) 1841.

Y. Li, G. W. Meng, L. D. Zhang, Appl. Phys. Lett. 76 (2000) (2011).

S. Y. Li, C. Y. Lee, T. Y. Tseng, J. Cryst. Growth 247 (2003) 357.

Al Asmar R., Zaouk D., Bahouth Ph., Podleki J., Foucaran A., Microelectronic Engineering 83 (2006) 393e8.

C. Klingshirn Semiconductor optics, Second Edition, new York (2005).

Caglar M., Ilican S., Caglar Y., Yakuphanoglu F., Applied Surface Science 255 (2009) 4491e6.

C. F. Klingshirn, Semiconductor Optics, Springer Verlag Berlin (1997).

Nadir Fadhil Habubi, Sami Salmann Chiad, Saad Farhan Oboudi, Ziad Abdulahad Toma, International Letters of Chemistry, Physics and Astronomy 4 (2013) 1-8.

Saad F. Oboudi, Nadir F. Habubi, Ghuson H. Mohamed, Sami S. Chiad, International Letters of Chemistry, Physics and Astronomy 8(1) (2013) 78-86.

J. A. Najim, J. M. Rozaiq, International Letters of Chemistry, Physics and Astronomy 10(2) (2013) 137-150. (Received 22 November 2013; accepted 26 November 2013).

Show More Hide