Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 21 > Quantitative Convergence between Physical-Chemical...
< Back to Volume

Quantitative Convergence between Physical-Chemical Constants of the Proton and the Properties of Water: Implications for Sequestered Magnetic Fields and a Universal Quantity

Full Text PDF

Abstract:

The ratio of the magnetic moment and charge of a proton when multiplied by the viscosity of water results in forces that when applied over the distance of O-H bonds provides quantum increments in the order of 10-20 J. Precise coefficients of this order of magnitude are consistent with the mechanisms associated with proton (H+) mobility and duration of the hydronium atom. When applied to aggregate properties of water that involve exclusion zones defined by boundaries containing marked proton density and coherent domains within which specific patterns of applied magnetic fields can be contained for protracted periods, these intrinsic properties suggest that the major features of the cell plasma membrane and living systems can be accommodated by proton movements within water. Water exposed in the dark to weak magnetic fields displayed a ~10 nm shift in peak wavelength as measured by a fluorescence spectrophotometer. Given the persistent emergence of 10-20 J as a functional unit of energy across the universe, the physical significance of the interaction between weak, temporally patterned magnetic fields and the organization of water within astronomical and abiogenic contexts may have been underestimated.

Info:

Periodical:
International Letters of Chemistry, Physics and Astronomy (Volume 21)
Pages:
1-10
Citation:
M. A. Persinger, "Quantitative Convergence between Physical-Chemical Constants of the Proton and the Properties of Water: Implications for Sequestered Magnetic Fields and a Universal Quantity", International Letters of Chemistry, Physics and Astronomy, Vol. 21, pp. 1-10, 2014
Online since:
November 2013
Export:
Distribution:
References:

[1] Sir W. Ramsay, F. G. Donnan, Text-Books of Physical Chemistry: A System of Physical Chemistry. Longmans, Green and Co. (1921).

[2] M. A. Persinger, Current Medicinal Chemistry 17 (2010) 3094-3098.

[3] T. E. Decoursey, Physiology Reviews 83 (2003) 475-579.

[4] M. A. Persinger, B. T. Dotta, K. S. Saroka, World Journal of Neuroscience 3 (2013) 10-16.

[5] M. A. Persinger, B. T. Dotta, K. S. Saroka, M. A. Scott, Journal of Consciousness Exploration & Research 4 (2013) 1-14.

[6] B. T. Dotta, N. J. Murugan, L. M, Karbowski, M. A. Persinger, International Journal of Physical Sciences 8 (2013) 1783-1787.

[7] J. DeMeo, Water 3 (2011) 1-47.

[8] G. H. Pollack, Advances in Colloid and Interface Science 103 (2013) 173-196.

[9] B-h. Chai, J-m Zheng, Q. Zhao, G. H. Pollock, Journal of Physical Chemistry 112 (2008) 2242-2247.

[10] C. R. House, Water Transport in Cells and Tissues. Edward Arnold Ltd, London, (1974).

[11] N. J. Murugan, L. M. Karbowski, R. M. Lafrenie, M. A. Persinger, manuscript in submission, (2013).

[12] N. J. Murugan, L. K. Karbowski, R. M. Lafrenie, M. A. Persinger, PLOS ONE 8 (2013) e6174. doi: 10. 371/journal. pone. 0061714.

[13] M. A. Persinger, S. A. Koren, International Journal of Neurosciences 117 (2007) 157-175.

[14] E. Del-Giudice, Journal of Biological Physics 20 (1994) 105-116.

[15] M. A. Persinger, Journal of Physics, Astrophysics and Physical Cosmology 3 (2009) 1-3.

[16] L-C. Tu, J. Luo, G. T. Gillies, Reports on Progress in Physics 68 (2005) 77-130.

[17] M. A. Persinger, The Open Astronomy Journal 2 (2012) 125-128.

[18] H. Shibai, T. Maihara, Progress in Theoretical Physics 69 (1983) 77-88.

[19] A. Neronov, I. Vovk, Science 328 (2010) 73-75.

[20] J. Hofmann, M. Krug, N. Ortegel, L. Gerard, M. Weber, W. Rosenfeld, H. Weinfurter, Science 337 (2012) 72-75.

DOI: https://doi.org/10.1126/science.1221856

[21] B. Pakkenberg, H. J. G. Gundersen, Journal of Comparative Neurology 384 (1997) 312-320.

[22] M. A. Persinger, International Letters of Chemistry, Physics and Astronomy 8 (2013) 8-19.

[23] M A. Persinger, C. Lavallee, Journal of Consciousness Studies 19 (2012) 128-153.

[24] R. Llinas, U. Ribardy, Proceedings of the National Academy of Sciences 90 (1993) 2078-2081. (Received 10 October 2013; accepted 16 October 2013).

Show More Hide
Cited By:

[1] M. Persinger, "Thixotropic Phenomena in Water: Quantitative Indicators of Casimir-Magnetic Transformations from Vacuum Oscillations (Virtual Particles)", Entropy, Vol. 17, p. 6200, 2015

DOI: https://doi.org/10.3390/e17096200