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ABSTRACT  

The analysis of diffraction by separate mixed-layer goffered nanotube’s lattice is offered. Two extreme 

cases of the large and small size of coherent scattering regions (CSR) in a radial direction are considered. 

The qualitative explanation of observed diffraction effects is given. 
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1.  INTRODUCTION 

 

The misfit mixed-layer nanotubes SnS2/SnS with a various degree of ordering in cylindri-

cal layers SnS2 and SnS alternation were synthesized in the Weizmann Institute of Science (Isra-

el) by R. Tenne group [1]. Nanotubes were synthesized on the basis of flat layered crystals SnS2 

by extraction of a part of S atoms and forming SnS layers. The misfit of layers SnS2 and SnS, 

having not only various parameters of lattices, but also symmetry of layer, results in a curvature 

of flat packs and forming nanotubes. 

During an experimental research the nanotubes with rather original structure were found, 

on the TEM-images of which the periodically alternating in a longitudinal direction of nanotube 

light and dark radial (or nearly so radial) strips were observed (fig. 1 and 2, violet line – nano-

tube axis, light-blue - zero layer line). More detailed analysis of the TEM-images has shown, that 

within the strips the layers have wavy character, and the radius of layers curvature is approxi-

mately constant. Hence, to coordinate the lattices the nanotubes layers are bent not only in a di-

rection of the cylinder’s circle, but also in direction of its axis, forming, thus, goffered nanotube. 

Originally such nanotubes were named "strained", however term "goffered" more corresponds to 

character of structure. 

It is obvious, that such way of coordination is possible only for the layers with close lon-

gitudinal (along a nanotube’s axis) parameters of lattices a [2]. The analysis of microdiffraction 

patterns has shown, that two types of layers SnS2 always take place in SnS2/SnS nanotubes: with 

a = 0,36 nm and developed on π/2 with a = 0,63 nm, while the parameter a of SnS layer is equal 

0,58 nm. Apparently, the additional bend in a direction of nanotube’s axis arises in pair of layers 

SnS2 and SnS, where the layer SnS2 has a = 0,63 nm, and this layer is positioned on the external 

side of the bend. Really, the goffering takes place only in mixed-layer  
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nanotubes OT (O - SnS layer, T - SnS2 layer) and is absent in structures OTT or OTOTT, where 

the presence of an additional SnS2 layer interferes with a bend. 

The "additional" layer lines with reflexes are distinctly observed in the microdiffraction 

patterns of goffered nanotubes (fig. 1 and 2). Similar additional layer lines, located close to basic 

ones, are known in superlattices diffraction researches. It allows to offer the model of nanotube 

structure, based on a wavy superlattice in a longitudinal direction, and to apply the known ap-

proaches to interpretation its diffraction pattern. The measurements have shown, that, as in usual 

superlattices, inverse value of distance Δs from the basic layer line up to additional one (fig. 1) 

well corresponds to longitudinal periodicity in the TEM-image, equal ≈ 5,4 nm. 

The microdiffraction patterns on fig. 1 and 2 are rather similar, however there is an essen-

tial difference. The distribution of intensity on an additional layer line near to basic layer line 20l 

on fig. 1 is similar to a profile of the basic line. The analogous distributions on microdiffraction 

pattern of goffered nanotube on fig. 2 have obvious displacements in a direction of nanotube’s 

axis. Interpretation of this effect requires theoretical research of a problem. 

 

 

 

      
Fig. 1. TEM-image, microdiffraction pattern and sublattices scheme of  SnS2-SnS nanotube 

with thick radial CSR. 

      
Fig. 2. TEM-image and microdiffraction pattern of  SnS2-SnS nanotube with thin radial CSR. 

Δs 

Δs 

20l 

8 Volume 2



 

 

  As a first step let’s consider positions of the lattice sites of circular orthogonal [2] gof-

fered nanotube, shown on a fig. 3 with the basic designations, and basic features of diffraction by 

it. 

 

 

2.  THE LATTICE OF GOFFERED NANOTUBE 

 

  Let nanotube, oriented along axis z, consists of the ordered alternating "goffered" pairs 

of layers type of A and B, having the superperiod λ and radius of the goffer bend rg. Let both lay-

ers of every m-th pair has the same centre of goffer curvature, located on a circle of radius Om 

(fig. 3). Let the radius of internal layer’s point, most remote from nanotube’s axis, is equal ρ0, dA 

and dB - thickness of layers A and B, accordingly, and d = dA + dB. 

The discussed way of the coordination means 

that Δε - an angle, under which the coordinated cell of 

pair layers is visible from the centre of curvature of pair, 

becomes the crystallographic constant. Longitudinal pa-

rameter a of a lattice of coordinated layers pair has no 

definite value and for convenience can be chosen on an 

internal surface of pair. 

Let's number the sites of lattice, formed by pairs, 

within the limits of superlattice’s  wave by integer varia-

ble t, and waves - by n. Then the angular position εt of 

any pair’s sites concerning their centre of curvature is 

possible to write down as: 

  tt ,  10  Tt , 

where 
gr

a
 , 

 drg 


2
arcsin


 , 

and z-coordinates of these sites and number of cells on 

the length of wave – as: 

 tgnt rnz 


 sin
2
 ,   

a

r
T

g2
 ,      (1) 

under obvious condition gr2 . 

Radius of circles, on which the centres of curva-

ture of an internal layer’s waves are located, is equal to ρ0 – rg. Hence, it is possible to write 

down the polar radiuses of sites of considered lattice as: 

 tggmmt rr  cos ,  mdm  0 .    (3) 

From here we can find an angle, under which the circular parameter b at εt = 0 is seen from the 

nanotube’s axis, and by it - the angular positions of sites: 

 m
m

mv v
b




  ,   10  mpv , 
b

p m
m

2
 ,    (4) 

where v - number of site on the circle, pm - number of sites on the m-th pair’s circles (integer by 

definition), εm - initial azimuthal angular phase of the appropriate layer. It is obvious, that the 

circular parameter b has some variation within the limits of superlattice wavelength λ in consid-

ered model. However it is known [3], that this parameter does not influence on circular nano-

tube’s strong (k = 0) reflexes, which consideration is the purpose of research. 
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Fig. 3. The basic designations in goffered 

nanotube. 
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3.  THE STRONG REFLEXES AMPLITUDE 

 

  Let’s write down an amplitude of diffraction by lattice, defining by expressions (1), (3) 

and (4), in cylindrical coordinates system {R, φ*, z*} in reciprocal space: 
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where tgt r  sin ,          (6) 

M and N - number of layer pairs in nanotube and its length (in units λ), accordingly. Sum over 

goffer periods (over n) is easily calculated and has sharp maxima, equal to N, at 

  1* hz     

1*
h

z  , ,...2,1,01 h .    (7) 

The expression (7) defines the system of layer planes in reciprocal space, on which all sites of  

reciprocal lattice take place. In a plane {R, z*}, that is in the section of these planes by Evald 

sphere, that corresponds to the usual electron microdiffraction experiment, it gives the system of 

close located to each other layer lines (7), which numbering is the same with values of index h1. 

Let’s be limit by half plane z* ≥ 0, that means h1 ≥ 0. 

With taking into account (7) amplitude transforms in: 
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Let’s expand the second exponent in (8) into a series of cylindrical waves according to 
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where, in view of triviality of sum over v, the first addendum looks like 
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and gives the amplitude of so-called "strong " reflexes [3]. 

  With the purpose of estimation of strong reflexes intensity distribution let’s approximate 

the Bessel function in (10) by cosine: 
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Let's consider the sum over t, having presented cosine in an exponential form: 
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With taking into account (3) and (6), the sum S1: 
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Let’s expand two last exponents into a series of cylindrical waves according to 
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Here, as well as earlier, is used the sum of a kind  
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which has a sharp maximum at x, equal to an integer of 2π, the height of a maximum is equal to 

M, and its width is inverse proportional to this value. For example, in the case of S0: x = q’Δε, M 

= T, the maximum of function is realized at 
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  However addendum S1 of amplitude contains also the multiplier, depending on the index 

of summation over nanotube’s layers (over m). This summation, after rejection of factors, insig-

nificant for this analysis, gives the amplitude’s multiplier G(2πRd), which also are looking like 

(16). Hence, the amplitude of strong reflexes represents a number of addendums, each of  
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which contains product of functions of a kind (16): G(2πRd) on the one hand, and one of func-

tions G0(q’Δε), Gc[(q’ ± 2q)Δε] and Gs[(q’ ± 2q ± 1)Δε] - on another. Last three functions do  

 

not depend on spatial variable R, but influence a choice of the members of series over q', the 

Bessel functions of which contain this variable. 

Thus, the character of an arrangement of amplitude maxima in a scale R depends on the 

correlation between the widths of functions of a kind (16), which are determined by parameters T 

and M, in each product: the narrower function determines form and position of diffraction pat-

tern maxima and the wider - modulates their intensities. Let's consider extreme cases of thick and 

thin radial CSR. 

 

3.1. The thick radial CSR (M >>  T) 

  In this case maxima of function G(2πRd) are narrow and intensive and positioned in 

points of it’s extremum: 

 lRd  22     
d

l
Rl  , ,...2,1,0 l .     (18) 

It means, that the arrangement of strong reflexes is identical on all layer lines of such nanotube. 

Such microdiffraction pattern is given in a fig. 1 with the only difference, that it belongs not cir-

cular nanotube, which lattice is considered for analysis simplification, but longitudinal mono-

clinic [2, 3]. Let's compare the relative intensities of layer lines, determined by addendums S0, Sc 

and Ss. 

  Let’s consider addendum S0. Maxima of function G0(q’Δε) are in points (17). On the 

other hand, the main maximum of Bessel function Jq’(2πrgR) is close to value of argument, equal 

to its index, that means, that in points (18) the main maxima of Bessel functions with q’ = 2πrgl/d 

are positioned. It is obvious, that generally this condition can not be satisfied simultaneously 

with condition (17). It means, that addendum S0 practically does not influence relative intensity 

of layer lines. 

Addendum Sc in points (18) looks like:   clcl
l
c SSS , where 
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The main maxima of Bessel functions of addendum 
clS  are located close to points q’ ≈ 2πrgl/d 

and  2q ≈ 2πrgh1/λ. On the other hand indexes q' and q are connected with each other by area of 

noticeable values of function Gc[(q’ + 2q)Δε], which rather wide maximum is in a point (q’ + 

2q)Δε = 2πh2. Thus, we obtain approximate equality: 
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As λ ≈ Ta, then in the last equality 
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the integer value of h1 is provided only at l = 0. With taking into account (7) it means, that of 

greatest intensity is the layer line (the basic layer line), located close to 
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at h2 > 0, as is observed in a fig. 1. 
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  As maxima of function Gc[(q’ + 2q)Δε] have some width, the layer lines, getting in the 

appropriate interval, also have appreciable intensity (additional layer lines). Let's take differen-

tial from both parts of (19) at a constant index h2, that is close to (20): 

lh  ~1 ,          (21) 

where the approximate equality is replaced with a mark of proportionality, as the interval of in-

tensive layer lines depends on experimental conditions too. From (21) it is visible, that the quan-

tity of additional layer lines is proportional to value of index l, that also is observed in a fig. 1. 

Addendum 
clS  gives the similar result for h2 < 0. 

 Addendum Ss in points (18) looks like   slsl
l
s SSS , where 
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Maxima of Bessel functions in 
slS  take place under conditions: q’ ≈ 2πrgl/d and 2q + 1 ≈ 

2πrgh1/λ, and maximum of function Gs[(q’ + 2q)Δε] is in a point (q’ + 2q + 1)Δε = 2πh2, that 

again gives (19) and all its consequences. 

 

3.2. The thin radial CSR (M <  T). 

  The basis for consideration of such model is the diffraction pattern in a fig. 2, which ra-

dially lengthened basal reflexes allow to speak about the small CSR sizes in this direction. In this 

case maxima of functions G0(q’Δε), Gc[(q’ ± 2q)Δε] and Gs[(q’ ± 2q ± 1)Δε] in (13), (14) and 

(15), accordingly, are narrower and intensive, than G(2πRd), and it is possible to be limited to 

their peak values. 

Let’s consider an addendum S0 at peak value of q' from (17). 
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Main maximum of the second Bessel function takes place at 
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But on the other hand summation over layers (over m) gives condition (18) again, though with a 

little wider maxima. However it is obvious, that in this case these two conditions are incompati-

ble too. Hence, addendum S0 has not essential influence on positions of strong reflexes. 

A condition of a maximum of functions Gc[(q’ ± 2q)Δε], included in Sc, looks like: 
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and function Sc, at this condition, 
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and is used: ε/Δε ≈ T/2. As before, let’s write down for 


2ch
S the approximate equality from con-

ditions of Bessel functions maxima at the peak value (18) of functions G(2πRd): 
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We again have obtained (19), that means, as in this case the basic layer line is close to z*, deter-

mined by (20), too. However function G(2πRd) in this case - modulating, the positions of peaks 

on the layer line are determined by maxima of function Gc[(q’ + 2q)Δε]. Then, substituting in 

last equality the current value of argument R instead of its peak value l/d, we obtain: 
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  This expression differs from its analogue (18) for a case of thick radial CSR in two as-

pects. First, the positions of strong reflexes on the layer line are determined not by "basal" inter-

layer spacing d, but "longitudinal" lattice parameter a. Secondly, the positions of all series dis-

places on distance h1/λ at transition from one layer line to another, that is observed on the dif-

fraction pattern in a fig. 2. 

  The estimation, similar to the previous item, of width of interval near the value (20), in 

which the additional layer lines take place, gives again expression (21), that also is observed on 

the diffraction pattern in a fig. 2. 

  Addendum S2 from (11) gives similar expressions for other combination of indexe’s h1, 

h2 and l signs. 

 

 

4. CONCLUSIONS 

 

  The analysis of formation of strong reflexes from the offered multiwall circular orthogo-

nal mixed-layer goffered nanotube’s lattice model, consisting from alternating layers of type A 

and B, has shown: 

1. All reflexes are located on system of layer lines z* = h1/λ, where h1 - index of layer line 

(integer), and λ - period of goffering. However the greatest intensity have reflexes of 

basic layer lines, which are close to value z*, appropriate to the coordinated longitudinal 

period a, that is z* = h2/a, where h2 - integer. 

2. At increase of the strong reflex’s index l intensity of additional layer lines become appre-

ciable, so, that the width of interval (lengthways z*) of layer lines, having appreciable in-

tensity, is proportional to this index. 

3. In case of thick radial CSR the strong reflexes are located on the layer line as those from 

not goffered lattice. In case of thin radial CSR the series of strong reflexes are displaced 

lengthways a layer line depending on its index h1. 
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