Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > ILCPA Volume 19 > Study of Stannous-Cerium Oxide Nanocomposites as...
< Back to Volume

Study of Stannous-Cerium Oxide Nanocomposites as Nanofilm, Nanodot and Nanorod

Full Text PDF


In the present paper, main emphasis is given to synthesize the Stannous-Cerium oxide nanocomposites in nanofilms, nanodots and nanorods by Chemical bath method, Chemical drop method and Chemical rolling Method. These nanocomposite materials are synthesized on a glass substrate at 100 °C temperature. Crystallography investigation of these materials is done by X-ray diffraction (XRD) which reveals that average grain size is 58.9 nm and 62.3 nm for nanofilms and nanodots on glass substrate respectively whereas XRD diffraction for nanorod on glass substrate reveals that material is amorphous in nature.


International Letters of Chemistry, Physics and Astronomy (Volume 19)
N. Budhiraja et al., "Study of Stannous-Cerium Oxide Nanocomposites as Nanofilm, Nanodot and Nanorod", International Letters of Chemistry, Physics and Astronomy, Vol. 19, pp. 69-79, 2013
Online since:
October 2013

C. G. Granqvist, Handbook of inorganic electrochromic materials, (1995).

T. Nakazawa, T. Inoue, M. Satoh, Y. Yamamoto, J. Appl. Phys. 34 (1995) 548.

T. J. Ahrens, Global Earth Physics, A Handbook of Physical Constants. American Geophysical Union, Washington, D.C., (1995).

A. Trovarelli, Catalysis by Ceria and Related Materials. 1st ed.; Imperial College Press: London, p.508, (2002).

G. W. Hunter, C. C. Liu, D. B. Makel, in: M.G. Hak (Ed), The MEMS Hand Book, CRC Press pp.1-22, (2002).

A. Goetzberger, C. Helbling, Sol. Energy Mater and solar cells 62 (2000) 1.

R. S. Niranjan, I. S. Mulla., Mater. Eng. B (2003) 103.

O. K. Varghase, L. K. Malhotra, Sensor & Actuators 53 (1998) 19.

N. S. Baik, G. Sakai, N. Miura, N. Tamajoe, Sensor & Actuators, 63 (2000) 74.

E. Comini, G. Faglia, G. Sberveglieri, Z. Pon, Z. L. Wang., Appl. Physics Lett. 81(10) (2002) 1869.

V. S. Vaishnav, P. D. Patel, N. G. Patel, Thin solid films 490 (2005) 94.

Zang H., Lacefield W. R., Biomaterials 21 (2000) 23.

R. Viswanatha, T. G. Venkatesh, C. C. Vidyasagar, Y. Arthoba Nayaka, Archives of Applied Science Research 4(1) (2012) 480-486.

Suresh R. Kulkarni, Archives of Physics Research 3(2) (2012) 116-122.

S. B. Kondawar, S. D. Bompilwar, V. S. Khati, S. R. Thakre, V. A. Tabhane, D. K. Burghate, Archives of Applied Science Research 2(1) (2010) 247.

Panneerselvaml, S. Ponarulselvam, K. Murugan, Archives of Applied Science Research 3(6) (2011) 208.

Xu W. L., Zheng M. J., Wu S., Shen W. Z., Appl. Phys. Lett. 85 (2004) 4364.

X. R. Ye, C. Daraio, C. Wang, J. B. Talbot, Jin Journal of Nanoscience and Nanotechnology 6 (2006) 852.

Shankar S. S., A. Ahmed, B. Akkamwar, M. Sastry, A. Rai, A. Singh, Nature 3 (2004) 482.

Jain D. H, D. Kumar, S. Kachhwaha, S. L. Kothari, J. of Nanomaterials and Biostructures 4 (2009) 557.

Choi J., Luo Y., Wehrspohn R. B., Hillebrand R., Schilling J., Gösele U, J. Appl. Phys. 94 (2003) 4757.

Ding G. Q., Shen W. Z., Zheng M. J., Fan D. H., Appl. Phys. Lett. 88 (2000) 103-106.

Wu G. S., Xie T., Yuan X. Y., Li Y., Yang L., Xiao Y. H., Zhang L. D., Solid State Commun 134 (2006) 485. ( Received 16 September 2013; accepted 20 September 2013 ).

Show More Hide
Cited By:
This article has no citations.