Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 19 > Crystallization Behavior and Microstructure of Bio...
< Back to Volume

Crystallization Behavior and Microstructure of Bio Glass-Ceramic System

Full Text PDF

Abstract:

The effects of Al2O3 on the crystallization behavior of glass compositions in the Na2O-CaO-SiO2 system were investigated by differential thermal analysis (DTA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Effect of Al2O3 content on the mechanical, density, phase formation and microstructures of Na2O-CaO–P2O5–Al2O3-SiO2 glass ceramics were studied. Thermal parameters of each glass were studied by DTA. The density of the glass ceramic samples was measured by Archimedes’ method. It was found that the glass–ceramic containing 2.0 molar percent Al2O3 had desirable sintering behavior and reached to an acceptable density. Phase investigation and micro structural study were performed by XRD and SEM, respectively.

Info:

Periodical:
International Letters of Chemistry, Physics and Astronomy (Volume 19)
Pages:
58-68
Citation:
B. Mehdikhani and G. H. Borhani, "Crystallization Behavior and Microstructure of Bio Glass-Ceramic System", International Letters of Chemistry, Physics and Astronomy, Vol. 19, pp. 58-68, 2013
Online since:
October 2013
Export:
Distribution:
References:

L. L. Hench, J. American Ceramic Society 81(8) (1998) 1705-28.

W. Donald, J. T. M. Turner, Journal of Periodontal Research 16(1) (2006) 89-99.

H. Shegarfi, Journal of Orthopaedic Surgery 17(2) (2009) 206-11.

S. F. Hulbert, Ceramics in Clinical Applications: Past, Present and Future. High Tech Ceramics, 1987: pp.189-213.

E. A. Suominen, J. Juhanoja, A. Yli-Urpo, Int. Orthop. 19 (1995) 167-73.

Y.Q. Li, P. F. Zhang, T. Kokubo, J. Master Sci: Mater Med. 3 (1992) 452-6.

L. L. Hench, J. Biomed. Mater. Res. 2(1) (1971) 117-41.

I. D. Thompson, L. L. Hench, Proc. Inst. Mech. Eng., Part H: J. Eng. Med. 212(2) (1998) 127-36.

F. H. Lin, M. H. Hon, J. Mater. Sci. 23(12) (1988) 4295-9.

P. N. De Aza, Z. B. Luklinska, J. Mater. Sci.: Mater. Med. 14(10) (2003) 891-8.

A. El-Ghannam, E. Hamazawy, A. Yehia, J. Biomed. Mater. Res. 55(3) (2001) 387-95.

T. Kokubo, M. Shigematsu, Y. Nagashima, et al., Bull. Inst. Chem. Res. Kyoto Univ. 60 (1982) 260-268.

T. Kasuga, K. Nakagawa, M. Yoshida, E. Miyade, J. Mater. Sci. 22 (1987) 3721-3724.

J. J. Shyu, J. M. Wu, J. Am. Ceram. Soc. 74 (1991) 2123-2130.

K. Kangasniemi, A. Yli-Urpo, Handbook of Bioactive Ceramics, Bioactive Glasses and Glass-Ceramics, vol. 1. Wilson J. (ed). CRC Press : Boston, 1990; 97.

D. U. Tulyaganov, S. Agathopoulos, P. Valerio, A. Balamurugan, A. Saranti, M. A. Karakassides, J. M. F., J. Mater Sci: Mater Med. 22 (2011) 217-227.

S. Jalota, S. B. Bhaduri, A. C. Tas, A New Rhenanite (β-NaCaPO4) and Hydroxyapatite Biphasic Biomaterial for Skeletal Repair, 2006 Wiley Periodicals, Inc. J. Biomedical Materials Research Part B: Applied Biomaterials, 304-316.

W. Gong, A. Abdelouas, W. Lutze, J. Biomed Mater Res. 54 (2001) 320-327.

E. A. Ghannam, J. Biomed Mater Res A. 69 (2004) 490-501.

E. Metwalli, R. K. Brow, J. Am. Ceram. Soc. 84 (2001) 1025-1032. ( Received 16 September 2013; accepted 20 September 2013 ).

Show More Hide