Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 19 > Effect on Magnetic Properties of Zinc Doped Nano...
< Back to Volume

Effect on Magnetic Properties of Zinc Doped Nano Ferrites Synthesized by Precursor or Method

Full Text PDF

Abstract:

Nanocrystalline Cu-Zn ferrites have been synthesized using precursor method. Cu-Zn ferrites were formed at low temperature without any impurities. The particle sizes were observed to decrease from 60 nm to 50 nm with increasing non-magnetic Zn doping. Cu is used to decrease the sintering temperature. The X-ray diffraction (XRD) and IR analysis of Cu-Zn revealed the formation of Single-Phase Spinel structure at very low annealing temperature. The particle sizes observed from XRD is very well in agreement with SEM analysis. Cu-Zn ferrite nanoparticles were observed to be dependent on the particle size. Saturation (Ms) and Remanence (Mr) magnetization of ferrites increases due to the modifications occurred among the A-B, A-A and B-B interactions of Spinel structure. The Coercive force (Hc) decreases with increase of Zn ions concentration.

Info:

Periodical:
International Letters of Chemistry, Physics and Astronomy (Volume 19)
Pages:
37-43
Citation:
T. Anjaneyulu et al., "Effect on Magnetic Properties of Zinc Doped Nano Ferrites Synthesized by Precursor or Method", International Letters of Chemistry, Physics and Astronomy, Vol. 19, pp. 37-43, 2013
Online since:
October 2013
Export:
Distribution:
References:

Ashok R.L., Jayanna H. S., Parameshwara P., Somasekhar R., Indian Journal of Pure and Applied Physics 47(10) (2009) 715-719.

Auzans E., Zins D., Blums E., Massart R., Journal Material Science 34 (1999) 1253-1260.

Chikazumi S and Charap S (1964). Physics of Magnetism. John Wiley and Sons, New York, p.140.

Coey J. M. D. (1996). Rare Earth Permanent Magnetism John Wiley and Sons, 1st edition New York, p.220.

Faungnawakij K., Tanaka Y., Shimoda N., Fukunaga T., Kikuchi R., Eguchi K., Applied Catalysis B74 (2007) 144-151.

Kakatkar S. V., Kakatkar S. S., Patil R. S., Sankpal A. M., Suryawanshi S. S., Bhosale D. N., Sawant S. R., Physica Status Solidi B198 (1996) 853-860.

Parvatheeswara Rao B., Caltun O., Cho W. S., Chong-Oh Kim, Cheol Gi Kim, Journal of Magnetism and Magnetic Materials 310 (2007) e812-e814.

Patange S. M., Shirsath Sagar E., Toksha B. G., Jadhav S. S., Shukla S. J., Jadhav K. M., Applied Physica A95(2) (2009) 429-434.

Pradhan S. K., Bid S., Gateshki M., Petkov V., Materials Chemistry and Physics 93 (2005) 224-230.

Raghavender A. T., Pajic D., Zadro K., Milekovic T., Venkateshwar Rao P., Jadhav K. M., Ravinder D., Journal of Magnetism and Magnetic Materials 316 (2007) 1-7.

Raghavender A. T., Shirsath S. E., Vijaya Kumar K., Journal of Alloys and Compounds 509(25) (2011)7004-7008.

Sattar A. A., El-Sayed H. M., El-Shokrofy K. M., and El-Tabey M. M., Journal of Materials Engineering and Performance 14(1) (2005) 99-103.

Smit J., Wijn H. P. J., Ferrites _Philips Technical Library, Eindhoven, (1959).

Sugimoto M., Journal of the American Ceramic Society 82 (1999) 269-280.

Suzuki Y., Annual Review of Material Research 31 (2001) 265-289.

Tanaka T., IEEE Transactions on Magnetics 35 (1999) 3010-3012.

Tao S. W., Gao F., Liu X. Q., and Sørensen O.T., Materials Science and Engineering B77(2) (2000) 172-176.

Tsoncheva T., Manova E., Velinov N., Paneva D., Popova M., Kunev B., Catalysis Communications 12(2) (2010) 105-109.

Wickham D. G., Inorganic Synthesis 9 (1967) 152.

Yafet Y., Kittel C., Physical Review 87 (1952) 290-294.

Yao C. W., Zeng Q. S., Goya G. F., Torres T., Liu J. F., Jiang J. Z., Journal of Physical Chemistry C111 (2007) 12274-12278.

Zuo X., Yang A., Vittoria C., Harris V. G., Journal of Applied Physics 99 08M909 (2009). ( Received 14 September 2013; accepted 18 September 2013 ).

Show More Hide