Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 19 > Structural and Optical Characterization of ZnO...
< Back to Volume

Structural and Optical Characterization of ZnO Nanoparticles Synthesized by Microemulsion Route

Full Text PDF


ZnO nanoparticles were synthesized by microemulsion route in W/S ratio of 5 at room temperature. X-ray diffraction (XRD) pattern reveals wurtzite structure of ZnO nanoparticles. Rod shape of ZnO nanoparticles of average particle size 10.0 to 12.0 nm were observed by transmission electron microscopy. FT-IR spectra confirmed the adsorption of surfactant molecules at the surface of ZnO nanoparticles and presence of Zn-O bonding. Thermal studies were carried out by the differential scanning calorimeter (DSC) techniques. In addition, UV-Visible spectra were employed to estimate the band gap energy of ZnO nanoparticles.


International Letters of Chemistry, Physics and Astronomy (Volume 19)
H. Kumar and R. Rani, "Structural and Optical Characterization of ZnO Nanoparticles Synthesized by Microemulsion Route", International Letters of Chemistry, Physics and Astronomy, Vol. 19, pp. 26-36, 2013
Online since:
Oct 2013

[1] Maciej Mazur, Electrochemistry Communications 6 (2004) 400-403.

[2] Lili Feng, Chunlei Zhang, Guo Gao, Daxiang Cui, Nanoscale Research Letters 7 (2012) 1-10.

[3] Angshuman Pal, Sunil Shah, Surekha Devi, Colloids and Surfaces A Physicochemical and Engineering Aspects 302 (2007) 483-487.

DOI: 10.1016/j.colsurfa.2007.03.032

[4] M. J. Rosemary, Thalappil Pradeep, Colloids and Surfaces A Physicochemical and Engineering Aspects A 268 (2003) 81-84.

[5] Yingwei Xie, Ruqiang Ye, Honglai Liu, Colloids and Surfaces A Physicochemical and Engineering Aspects 279 (2006) 175-178.

DOI: 10.1016/j.colsurfa.2005.12.056

[6] Michael H. Huang, Samuel Mao, Henning Feick, Haoquan Yan, Yiying Wu, Hannes Kind, Eicke Weber, Richard Russo, Peidong Yang, Science 292 (2001) 1897-1899.

DOI: 10.1002/chin.200140254

[7] Xudong Wang, Jinhui Song, Jin Liu, Zhang L. Wang, Science 316 (2007) 102-105.

[8] C. Y. Jiang, X. W. Sun, G. Q. Lo, D. L. Kwong, J. X. Wang, Applied Physics Letters 90 (2007) 263501-263503.

[9] Qing Wan, Q. H. Li, Y. J. Chen, Ta-Hung Wang, X. L. He, J. P. Li, C. L. Lin, Applied Physics Letters 84 (2004) 3654-3656.

[10] Chia Ying Lee, Seu Yi Li, Pang Lin, Tseung-Yuen Tseng, Journal of Nanoscience Nanotechnology 5 (2005) 1088-1094.

DOI: 10.1088/0957-4484/16/4/021

[11] Hung-Ta Wang, B. S. Kang, Fan Ren, L. C. Tien, P. W. Sadik, D. P. Norton, S. J. Pearton, J. Lin, Applied Physics Letters 86 (2005) 243503-243505.

[12] Jih-Jen Wu, Guan-Ren Chen, Hung-Hsien Yang, Chen-Hao Ku, Jr-Yuan Lai, Applied Physics Letters 90 (2007) 213109-213111.

DOI: 10.1063/1.2742639

[13] S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, G. C. Yi, Applied Physics Letters 84 (2004) 3241-3243.

[14] Nick Serpone, Deniele Dondi, Angelo Albini, Inorganica Chimica Acta 360 (2007) 794-802.

DOI: 10.1016/j.ica.2005.12.057

[15] Surabhi S. Kumar, Putcha Venkateswarlu, Vanka. R. Rao, Gollapalli N. Rao, International Nano Letters 3 (2013) 1-6.

DOI: 10.1186/2228-5326-3-30

[16] M. Maillard, S. Giorgo, Marie P. Pileni, Advanced Material 14 (2002)1084-1086.

[17] Zeena S. Pillai, Prashant V. Kamat, The Journal of Physical Chemistry B 108 (2004) 945-951.

[18] Kirti Patel, Sudhir Kapoor, D. P. Dave, Tulsi Murherjee, Journal of Chemical Science 117 (2005) 53-60.

[19] R. A. Salkar, P. Jeevanandam, S. T. Aruna, Yuri Koltypin, A. Gedanken, Journal of Materials Chemistry 9 (1999) 1333-1335.

DOI: 10.1039/a900568d

[20] Behrouz Soroushian, Isabelle Lampre, Jacqueline Belloni, Mehran Mostafavi, Radiation Physics Chemistry 72 (2005) 111-118.

DOI: 10.1016/j.radphyschem.2004.02.009

[21] B. G. Ershov, E. Janata, A. Henglein, A. Fojtik, Unpubliseh report (2007).

[22] Maria Starowicz, Barbara Stypula, Jacek Banaœ, Electrochemistry Communications 8 (2006) 227-230.

DOI: 10.1016/j.elecom.2005.11.018

[23] Jun-Jie Zhu, Xue-Hong Liao, Xiao-Ning Zhao, Hong-Yuang Hen, Material Letters 49 (2001) 91-95.

DOI: 10.1016/s0167-577x(00)00349-9

[24] S. Liu, S. Chen, S. Avivi, A. Gendanken, Journal of Non-crystalline Solids 283 (2001) 231-236.

[25] F. J. Arriagada, K. Osseo-Asare, Journal of Colloid Interface Science 211 (1999) 210-220.

[26] Dong-Sik Bae, Eun-Jung Jungkim, Jae-Hee Bang, Sang-Woo Kim, Kyong-Sop Han, Jong-Kyu Lee, Byang-Ik Kim, James H. Adair, Metal and Materials International 11 (2005) 291-294.

DOI: 10.1007/bf03027331

[27] Dong-Sik Bae, Sang-Whan Park, Kyon-Sop Han, James H. Adair, Metal and Materials International 7 (2001) 399-402.

[28] Marei P. Pileni, Structure and reactivity in reverse micelles, Elsevier, Amsterdam, New York (1989).

[29] Harish Kumar, Renu Rani, Raj K. Salar, The European conference of chemical engineering, and European conference of civil engineering, and European conference of mechanical engineering, and European conference on Control (ECCE-10), 30 Nov. - 2 Dec., 2010, Tennrife Insland, Spain 88-94.

[30] Harish Kumar, Renu Rani, Raj K. Salar, Research Journal of Chemical 1 (2011) 42-48.

[31] J. K. Saha, J. Podder, Journal of Bangladesh Academic Sciences 35 (2011) 203-21.

[32] S. Quintillán, C. Tojo, M. C. Blanco, M. A. López-Quintela, Langmiur 17 (2001) 7251- 7254.

[33] D. Dodoo-Arhin, M. Leoni, P. Scardi, Molecular Crystals & Liquid Crystals 555 (2012) 17-31.

DOI: 10.1080/15421406.2012.634357

[34] Joint Committee on powder diffraction standards (2000) Diffraction data file, No. 36- 1451.

[35] C. Chena, B. Yu, P. Liu, J. F. Liu, L. Wang, Journal of Ceramic Processing Research 12 (2011) 420-425.

[36] Swee-Yong Pung, Wen-Pie Lee, Azizan Aziz, International Journal of Inorganic Chemistry 2012 (2012) 1-9.

[37] B. D. Culity, Elements of X-ray diffraction 2nd ed, Addison-Wesley, USA, (1987).

[38] G. Voicu, O. Oprea, B. S. Vasile, E. Andronescu, Digest Journal of Nanomaterials and Biostructures 8 (2013) 667-675.

[39] C. N. R. Rao, Chemical Applications of Infrared spectroscopy, Academic Press, New York and London, (1963).

[40] I. Markova-Deneva, Journal of the University of Chemical Technology and Metallurgy 45 (2010) 351-378.

[41] V. Parthasarathi, G. Thilagavathi, International Journal of Pharmaceutical Science 3 (2012) 1-7.

[42] Pathik Kumbhakar, Devendra Singh, Chandra S. Tiwary, Amya K. Mitra, Chalcogenide letters 5 (2008) 387-394.

[43] T. S. Moss, G. J. Burrell, B. Ellis, Semiconductor Opto-Electronics, Butterworth & Co. Ltd. (1973).

[44] H. M. Honsi, S. A. Fayek, S. M. Al-Sayed, M. Roushdy, M. A. Soliman, Vacuum 81 (2006) 54-58.

[45] A. Sawby, M. S. Selim, S. Y. Marzouk, M. A. Mostafa, A. Hosny, Physica B: Physics of Condensed Matter 405 (2010) 3412-3420.

DOI: 10.1016/j.physb.2010.05.015

[46] N. F. Mott, E. A. Davies, Electronic Processes in Non-Crystalline Materials, 2nd ed., Claredon Press, Oxford, (1979).

[47] A. N. Banerjee, K. K. Chattopadhyay, in D. Depla, S. Maheiu (Eds. ), Springer- Verlag: Berlin, Heidelberg, (2008).

[48] M. Mazhdi, P. Hossein Khani, International Journal of Nano Dimensions 2 (2012) 233-240.

[49] J. P. Yang, F. C. Meldrum, J. H. Fendler, Journal of Physical Chemistry 99 (1995), 5500-5504.

[50] Saad F. Oboudi, Nadir F. Habubi, Ghuson H. Mohamed, Sami S. Chiad, International Letters of Chemistry, Physics and Astronomy 8(1) (2013) 78-86.

DOI: 10.18052/

[51] Sujan Kumar Das, Jahid M. M. Islam, Monirul Hasan, Humayun Kabir, Md. Abdul Gafur, Enamul Hoque, Mubarak A. Khan, International Letters of Chemistry, Physics and Astronomy 10(1) (2013) 90-101.

DOI: 10.18052/

[52] J. A. Najim, J. M. Rozaiq, International Letters of Chemistry, Physics and Astronomy 10(2) (2013) 137-150.

[53] Majid H. Hassouni, Khudheir A. Mishjil, Sami S. Chiad, Nadir F. Habubi, International Letters of Chemistry, Physics and Astronomy 11 (2013) 26-37.

DOI: 10.18052/

[54] C. Indira Priyadharsini, A. Prakasam, P. M. Anbarasan, International Letters of Chemistry, Physics and Astronomy 12 (2013) 82-93 ( Received 13 September 2013; accepted 17 September 2013 ).

DOI: 10.18052/
Show More Hide