Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 19 > The Effect of Silicon Orientation on Thickness and...
< Back to Volume

The Effect of Silicon Orientation on Thickness and Chemical Bonding Configuration of SiOxNy Thin Films

Full Text PDF


Fourier Transform Infrared (FTIR) Spectroscopy and Capacitance-Voltage measurements are used to characterize the chemical bonding configuration and crystallographic orientations for SiOxNy thin films grown by glass assisted CO2 laser. FTIR spectra detected the Si-O and Si-N strongest absorption bands are close to each other at wave number in the range (700-1000 cm-1) depending on silicon substrates, and Si-O stretching bond at wave number around (~1088.285 cm-1) with a FWHM of 73.863 cm-1 for the two samples, the presences of hydrogen impurities like Si-H and N-H in the films were also identified and calculated. From C-V measurement film thickness were calculated and found to be 19.2 and 17.2 nm for SiOxNy/Si(111) and SiOxNy/Si(100) respectively. From the flat band voltage of -5.4 and -1.3 measured the two samples, their interface trap densities were found to be 1.4 × 1013 and 1.57 × 1013 ev-1·cm-2 respectively.


International Letters of Chemistry, Physics and Astronomy (Volume 19)
M.M. Ismael, "The Effect of Silicon Orientation on Thickness and Chemical Bonding Configuration of SiOxNy Thin Films", International Letters of Chemistry, Physics and Astronomy, Vol. 19, pp. 1-9, 2013
Online since:
October 2013

N. Konofaos, E. K. Evangelou, Sci. Technol. 18 (2003) 56-59.

F. Rebib, E. Tomasella, M. Dubois, J. Cellier, T. Sauvage, M. Jacquet, Thin solid films 515 ( 2007) 3480-3487.

F. Rebib, E. Tomasella, V. Micheli, C. Eypert, J. Cellier, N. Laidani, Opt. Mater. 31 (2009) 510-513.

M. Bedjaoui, B. Despax, Thin solid film 815 (2010) 4142-4149.

F. Rrebib, E. Tomasella, V. Micheli, C. Eypert, J. Cellier, N. Laidani, Opt. Mater. 31 (2009) 510-513.

S. H. Mohamed, Physica B 406 (2011) 211-215.

Y. Liu, I. K. Lin, X. Zhang, Mat. Sci. Engineering A 489 (2008) 294-301.

D. V. Tsu, G. Lucovsky, M. J. Mantini, Phys. Rev. B 33 (1986) 7069-7076.

J. A. Diniz, P. J. Tatsch, M. A. A. Pudenzi, Appl. Phys. Lett. 69 (1996) 2214-2215.

T. Maruyma, T. Shirai, Appl. Phys. Lett. 63 (1993) 611-613.

V. P. Tolstoy, I. V. Chernyshova, V. A. Skryshevsky, Hand book of infrared spectroscopy of ultra thin films, A John , Wiley and Sons, Inc., (2003).

W. L. Scopel, M. C. A. Fantini, M. I. Alayo, I. Pereyra, Thin Solid Films 413 (2002) 59-64.

F. Giorgis, C. F. Pirri, E. Tresso, Thin Solid Films 307 (1997) 298-305.

R. K. Pandey, L. S. Patil, J. P. Bange, D. R. Patil, A. M. Ahajan, D. S. Patil, D. K. Gautam, Opt. Mater. 25 (2004) 1-7.

L. S. Patil, R. K. Pandey, J. P. Bange, S. A. Gaikwad, D. K. Gautam, Opt. Mater. 27 (2005) 663-670.

H. J. Schliwinski, U. Schnakenberg, W. Windbrache, H. Neff, P. Lange, J. Electrochem. Soc. 139 (1992) 1730-1735.

J. X. Zhang, H. Cheng, Y. Z. Chen, A. Uddin, Shu Yuan, S. J. Geng, S. Zhang, Surface and coating technology 198 (2005) 68-73.

D. K. Schroder, Semiconductor Material and Device Characterization, John-Wiley & Sons, Inc. (NJ, USA) (2006), Ch. 6, 328.

S. M. Sze, K. K. Ng, Physics of Semiconductor Devices, 3rd ed., John Willy  Sons Inc., (2007).

E. H. Nicollian, J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology, John Wiley and Sons, (2003).

M. M. Ismael, Characteristics of SiOxNy Thin Films Prepared by CO2 Laser, Msc. Thesis, Salahaddin University-Erbil, (2010).

S. M. Sze, Physics of Semiconductor Devices, second ed., Wiley/Interscience, New York, (1981). ( Received 24 August 2013; accepted 01 September 2013 ).

Show More Hide
Cited By:

[1] I. Karaduman, D. Yıldız, M. Sincar, S. Acar, "UV light activated gas sensor for NO2 detection", Materials Science in Semiconductor Processing, Vol. 28, p. 43, 2014