Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 17 > Thermal Properties of Carbon Nanotube (CNT)...
< Back to Volume

Thermal Properties of Carbon Nanotube (CNT) Reinforced Polyvinyl Alcohol (PVA) Composites

Full Text PDF

Abstract:

Homogeneous Polyvinyl alcohol (PVA)/Carbon nanotube (CNT) composite has been prepared by solution casting method using gum acacia as a surfactant. CNT content in the composite was varied from 5-10% by weight. The thermal properties of PVA/CNT composites were investigated by Thermo Gravimetric/Differential Thermal Analyzer (TG/DTA) and Thermo Mechanical Analyzer (TMA). TG/DTA results showed that higher thermal stability in higher percentage of CNT in the composites. The 10% CNT containing PVA composite exhibit highest onset of melting, glass transition point and offset of melting temperature and the recoded values are 330.4K, 379K and 421.3K respectively. All of the result indicates that the developed PVA/CNT composite might be promising for use in solar cell application

Info:

Periodical:
International Letters of Chemistry, Physics and Astronomy (Volume 17)
Pages:
59-66
DOI:
10.18052/www.scipress.com/ILCPA.17.59
Citation:
M. Hasan et al., "Thermal Properties of Carbon Nanotube (CNT) Reinforced Polyvinyl Alcohol (PVA) Composites", International Letters of Chemistry, Physics and Astronomy, Vol. 17, pp. 59-66, 2013
Online since:
Sep 2013
Export:
Distribution:
References:

Kroto H. W., Rev. Mod. Phy. 69 (1991) 703. http: /www. des. upatras. gr/physics/christides/pdf%5CKroto. pdf.

Ishida H., Campbell S., Blackwell J., Chem. Mater. 12 (2000) 1260-1267.

Vaia R. A., Giannelis E. P., MRS Bulletin 26 (2001) 394-401. DOI: 10. 1557/mrs2001. 93.

Cumings John, Zettl A., Science 289 (2000) 602-604. http: /mse. umd. edu/~cumings/PDF%20Publications/02. Sci289cumings. pdf.

S. Iijima, Nature 354 (1991) 56-58. http: /www. nature. com/physics/looking-back/iijima/iijima. pdf.

Qian D., Dickey E. C., Andrews R., Rantell T., Appl. Phys. Lett. 72 (1998) 188-190. http: /dx. doi. org/10. 1063/1. 120680.

Zhang X., Liu T., Kumar, S., Moore V. C., Hauge R. H., Smalley R. E., Nano Letters 03 (2003) 1285-1288. DOI: 10. 1021/nl034336t.

Chen XL, Liu YJ, Computational Materials Science 29 (2004) 1-11. http: /dx. doi. org/10. 1016/S0927-0256(03)00090-9.

Iijima S., Ichlhashi T., Nature 363 (1993) 603-605. doi: 10. 1038/363603a0.

C. A. Cooper, S. R. Cohen, A. H. Barber, Appl. Phys. Lett. 81 (2002) 3873-3875.

Wagner H. D., Chem. Phys. Lett. 361(2002) 57-61. DOI: 10. 1016/S0009-2614(02)00948-X.

Zaho Q., Nardali M.B., Bernholc J., Phys. Rev. B 65 (2002) 144105. DOI: 10. 1103/PhysRevB. 65. 144105.

Shaffer M. S. P., Windle A. H., Advan. Mater. 11 (1999) 937-941. DOI: 10. 1002/(SICI)1521-4095(199908)11: 11<937: AID-ADMA937>3. 0. CO; 2-9.

Lourie O., Wagner H. D., Appl. Phys. Lett. 73 (1998) 3527-3529. http: /dx. doi. org/10. 1063/1. 122825 ( Received 02 August 2013; accepted 07 August 2013 ).

Show More Hide