Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 16 > Gravitational and Experimental Electromagnetic...
< Back to Volume

Gravitational and Experimental Electromagnetic Contributions to Cerebral Effects upon Deviations from Random Number Variations Generated by Electron Tunneling

Full Text PDF

Abstract:

New theoretical and traditional quantitative solutions involving a pervasive unit quantum of ~10-20 J within biological and large-scale physical systems predicted that the mass of the human subject, subtle changes in gravitational phenomena, and the energy available within the cerebral volume should affect proximal random number variations produced by electron tunneling. In a series of experiments application of a specific, physiologically-patterned weak magnetic field over the right temporal lobe significantly enhanced the effects of intention upon deviations from random variations created by electron tunneling devices at a distance of 1 m. These variations were strongly (r~0.80) correlated with the coupling between the forces from the background free oscillations of the earth and the energy differences across the cell width between lunar perigee and apogee. The results support the approach that complex cognitive processes including “intention” can be described by physicochemical parameters and their magnitude of energies are within the range by which interactions or modulations from subtle gravitational forces applied across the cellular membrane and width might occur.

Info:

Periodical:
International Letters of Chemistry, Physics and Astronomy (Volume 16)
Pages:
72-85
Citation:
J. M. Caswell et al., "Gravitational and Experimental Electromagnetic Contributions to Cerebral Effects upon Deviations from Random Number Variations Generated by Electron Tunneling", International Letters of Chemistry, Physics and Astronomy, Vol. 16, pp. 72-85, 2013
Online since:
August 2013
Export:
Distribution:
References:

T. Borowski, International Letters of Chemistry, Physics and Astronomy 1 (2012) 1-5.

M. A. Persinger, Current Medicinal Chemistry 17 (2010) 3094-3098.

T. E. Decoursey, Physiological Reviews 83 (2003) 475-579.

M. A. Persinger, S. A. Koren, G. F. Lafreniere, NeuroQuantology 6 (2008) 262-271.

A. A. Minakov, A. P. Nikolaenko, L. M. Rabinovitch, Radiofizika 35 (1992) 915-923.

B. M. Vladmirskii, Biophysics 40 (1995) 915-923.

M. A. Persinger, The Open Astronomy Journal 5 (2012) 41-43.

K. Nishida, N. Kobayashi, Y. Fukao, Science 287 (2000) 2244-2246.

K. Saroka, M. A. Persinger, Epilepsy and Behavior 28 (2013) 395-407.

M. A. Persinger, C. Lavallee, Journal of Consciousness Studies 19 (2012) 128-153.

G. S. Berns, J. D. Cohen, M. A. Mintun, Science 276 (1997) 1272-1275.

M. A. Persinger, International Journal of Geosciences 3 (2012) 192-194.

B. T. Dotta, K. S. Saroka, M. A. Persinger, Neuroscience Letters 513 (2012) 151-154.

R. G, Jahn and B. J. Dunne, Margins of reality: the role of consciousness in the physical world, Harcourt Brace Javanovich (1987).

G. Adelman (ed), Encyclopedia of neuroscience, Birkhauser (1987).

P. L. Nunez, Neocortical dynamics and human EEG rhythms, Oxford Press (1995).

M. A. Persinger, K. S. Saroka, S. A. Koren, L. S. St-Pierre, Journal of Consciousness Exploration and Research 1 (2010) 803-830.

B. P. Mulligan, M. D. Hunter, M. A. Persinger, Advances in Space Research 45 (2010) 940-948.

Q. H. Mach, M. A. Persinger, Brain Research 1261 (2009) 45-53.

M. A. Persinger, C F. Lavallee, Journal of Consciousness Exploration and Research 1 (2010) 785-807.

I. Cosic, IEEE Transactions for Biomedical Engineering 41 (1994) 1101-1114.

B. T. Dotta, M. A. Persinger, Journal of Biophysical Chemistry 3 (2012) 72-80. ( Received 25 July 2013; accepted 28 July 2013 ).

Show More Hide
Cited By:
This article has no citations.