Paper Titles in Periodical
International Letters of Chemistry, Physics and Astronomy
Volume 15


Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 15 > Development of Electrically Conductive...
< Back to Volume

Development of Electrically Conductive Nanocrystalline Thin Film for Optoelectronic Applications

Full Text PDF


Sodium alginate (TiO2) sand composites were prepared by solution casting. Purified sand was added in the composite films to increase electrical conductivity. Electrical properties such as conductivity, capacitance, dielectric constant, and loss tangent of the composites were investigated. The current voltage characteristics for all the composites showed ohmic behavior. All the electrical properties have been found to improve with the incorporation of sand (SiO2) but 6% sand containing composite exhibits the best electrical properties. The mechanical properties tensile strength (TS), elongation at break (Eb) and Young modulus for 6% sand containing composite film are found to be 4.445 MPa, 9.76%, and 72.8 MPa respectively. The experimental results reveal that the blended films exhibit higher stability and improved mechanical properties of both tensile strength and elongation at break in dry state. Water absorption properties of the composites are found to decrease with the increase of sand content. Lowest water uptake properties and highest stability were demonstrated by 6% sand containing sample. Electrically conductive composite films have useful applications for solar cells and optoelectronics. Thus, this study is very much expected to aid in the design and selection of proper composite for the potential application of solar cell and optoelectronics.


International Letters of Chemistry, Physics and Astronomy (Volume 15)
S. K. Das et al., "Development of Electrically Conductive Nanocrystalline Thin Film for Optoelectronic Applications", International Letters of Chemistry, Physics and Astronomy, Vol. 15, pp. 90-101, 2013
Online since:
Sep 2013

[1] Lay G., Rehm J., Stepto R. F., Thoma M., Sachetto J., Lentz D. J., Silbiger J., U.S. Patent No. 5, 095, 054 (1992).

[2] Hamal D. B., Klabunde K. J., J. Colloid Interface Sci. 311 (2007) 514-522, http: /dx. doi. org/10. 1016/j. jcis. 2007. 03. 001.

[3] B. Tryba, A.W. Morawski, M. Inagaki, Appl. Catal. B: Environ. 46 (2003) 203-208, http: /dx. doi. org/10. 1016/S0926-3373(03)00214-5.

[4] P. Chrysicopoulou, D. Davazoglou, Chr. Trapalis, G. Kordas, Thin Solid Films 323 (1998) 188-193, http: /dx. doi. org/10. 1016/S0040-6090(97)01018-3.

DOI: 10.1016/s0040-6090(97)01018-3

[5] Lee J. W., Kong S., Kim W. S., and Kim J., Mater. Chem. Phys. 106 (2007) 39-44, http: /dx. doi. org/10. 1016/j. matchemphys. 2007. 05. 019.

[6] Wang W., Tao J., Wang T., Wang L., Rare Met. 26 (2007) 136-141, http: /dx. doi. org/10. 1016/S1001-0521(07)60173-9.

[7] Doh J. G., Hong J. S., Vittal R., et al., Chem. Mater. 16 (2004) 493-497. doi: 10. 1021/cm030542q.

[8] Zhang D., Yoshida Y., Oekermann T., et al., Adv. Funct. Mater. 16 (2006) 1228-1234, doi: 10. 1002/adfm. 200500700.

[9] Rothschild, A., Edelman, F., Komem, Y., et al., Sensor Actuat., Ser. B, 67 (2000) 282-289, http: /dx. doi. org/10. 1016/S0925-4005(00)00523-2.

[10] Shankar K., Tep K. C., Mor G. K., et al., J. Phys., Ser. D: Appl. Phys. 39 (2006) 2361-2366, doi: 10. 1088/0022-3727/39/11/008.

[11] Diebold U., Appl. Phys., Ser. A 76 (2003) 681-687, doi: 10. 1007/s00339-002-2004-5.

[12] Choi S. Y., Mamak M., Speakman S., et al., Small 1 (2005) 226-232. doi: 10. 1002/smll. 200400038.

[13] Chu S. Z., Inoue S., Wada K., Li D., et al., Langmuir 21 (2005) 8035-8041, doi: 10. 1021/la050902j.

[14] Kim K. D., Han D. N., Lee J. B., et al., Scrip. Mater. 54 (2006) 143-146, http: /dx. doi. org/10. 1016/j. scriptamat. 2005. 09. 054.

[15] Wang H., Lewis J. P., J. Phys., Ser. C 17 (2006) L 209-213, doi: 10. 1088/0953-8984/17/21/L01.

[16] Pan J. H., Lee W. I., Chem. Mater. 18 (2006) 847-853, doi: 10. 1021/cm0522782.

[17] Bavykin D. V., Friedrich J. M., Walsh F. C., Adv. Mater. 18 (2006) 2807-2824, doi: 10. 1002/adma. 200502696.

[18] Standard Methods for the Sampling and Testing of Gelatins, Gelatin Manufacturers Institute of America, Inc., 501 fifth Ave., Room 1015, New York, NY.

[19] Ali A., Studies on the Degradation of Jute fibre, An M. Sc. Thesis, Rajshahi University, Rajshahi, Bangladesh, 66 (1987) 29-31.

[20] Leach D. C., Mechanical & Fire Properties of APC-2 Presented at SAMPLE at Albuqueeque, 1987, 9-11.

[21] Bipasha Bose, Effect of water absorption on the mechanical properties of jute fiber reinforced polymer composites, (2005).

[22] ASTM Designation: D570-81, Standard Test Method for water absorption of plastic, 1988, 141-143.

[23] Farnades F. N., Riz A. I., Garder M., Aranda P., Ruiz-Hitzky E., Journal of Nanoscience and Nanotechnology, in press (2008).

[24] Caio M. Paranhos, G. Bluma Soares, et al, Macromol. Mater. Eng. 292 (2007) 620-626.

[25] Zanetti M., Lomakin S., Camino G., Macromal. Mater. Eng. 279 (2000) 1-9, doi: 10. 1002/1439-2054(20000601)279: 1<1: AID-MAME1>3. 0. CO; 2-Q ( Received 23 May 2013; accepted 27 May 2013 ).

Show More Hide