Paper Titles in Periodical
International Letters of Chemistry, Physics and Astronomy
Volume 13

Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 13 > Composition and Optical Dispersion...
< Back to Volume

Composition and Optical Dispersion Characterization of Nanoparticles ZnO-NiO Thin Films: Effect of Annealing Temperature

Full Text PDF

Abstract:

Thin films of ZnO0.7NiO0.3 have deposited on glass substrates at room temperature by using thermal evaporation technique under vacuum 10-5 mbar. The optical properties and dispersion parameters of the films have been studied. Changes in direct optical energy band gap of films were confirmed before and after annealing. The optical energy gap Eg decreased from 3.11 to 2.86 eV with increasing of annealing temperature to 200 °C. Some of the optical absorption parameters, such as optical dispersion energies Eo and Ed, Urbach tails EU , dielectric constant ε, the average values of oscillator strength So, and wavelength of single oscillator λo have been reported. An increase in the annealing temperature causes an increase in the average oscillator strength from 62.02 to 87.71 eV.

Info:

Periodical:
International Letters of Chemistry, Physics and Astronomy (Volume 13)
Pages:
78-86
DOI:
10.18052/www.scipress.com/ILCPA.13.78
Citation:
S. F. Oboudi et al., "Composition and Optical Dispersion Characterization of Nanoparticles ZnO-NiO Thin Films: Effect of Annealing Temperature", International Letters of Chemistry, Physics and Astronomy, Vol. 13, pp. 78-86, 2013
Online since:
Sep 2013
Export:
Distribution:
References:

C. Klinshirn, Physica Status Solidi (b) 244 (2007) 3027-3073, DOI: 10. 1002/pssb. 200743072.

C. F. Windisch Jr., K. F. Ferris, G. J. Exarhos, J. Vac. Sci. Technol. A 19(4) (2001) 1647-1651.

Akio Suzuki, Tatsuhiko Matsushita, Yoshiaki Sakamoto, Naoki Wada, Tomoya Fukuda, Hideki Fujiwara, Masahiro Okuda, Jpn. J. Appl. Phys. 35 (1996) 5457-5461.

S. Hayamizu, H. Tabata, H. Tanaka, T. Kawai, J. Appl. Phys. 80 (1996) 787, http: /dx. doi. org/10. 1063/1. 362887.

H. -J. Ko, T. Yao, Y. Chen, S. -K. Hong, J. Appl. Phys. 92, 4354 (2002) 61-68.

Masato Kon, PungKeun Song, Akira Mitsui, Yuzo Shigesato, Jpn. J. Appl. Phys. 41 (2002) 6174-6179.

Quan-Bao Ma, Zhi-Zhen Ye, Hai-Ping He, Shao-Hua Hu, Jing-Rui Wang, Li-Ping Zhu, Yen-Zhu Zhang, Bing-Hui Zhao, J. of Crystal Growth 304 (2007) 64-68.

Tadatsugu Minami, Satoshi Ida, Toshihiro Miyata, Youhei Minamino, Thin Solid Films 445 (2003) 268-273.

Li, Y., Tompa, G. S., Liang, S., Gorla, C., Lu, Y., Journal of Vacuum Science & Technology A 15 (1997) 1063-1068.

SeppoLindroos, MarkkuLeskela, International Journal of Inorganic Materials 2 (2000) 197-201.

K. T. Ramakrishna Reddy, H. Gopalaswamy, P. J. Reddy, R. W. Miles, J. of Crystal Growth 210 (2000) 516-520.

K. T. Ramakrishna Reddy, T. B. S. Reddy, I. Forbes, R. W. Miles, Surface and Coatings Technology 151-152 (2002) 110-113.

Jin-Hong Lee, Byung-Ok Park, Thin Solid Films Vol. 426 (1-2) (2003) 94-99.

V. R. Shinde, C. D. Lokhande, R. S. Mane, H. Sung-Hwan, Applied Surface Science 245 (2005) 407-413.

S. V. Han, D. H. Lee, V. J. Chang, S. O. Ryu, T. J. Lee, C. H. Chang., Journal of the Electrochemical Society 153(6), (2006) 382.

Q. Y. Li, R. N. Wang, Z. R. Nie, Z. H. Wang, Q. Wei, Journal of Colloid and Interface Science 320 (2008) 254-258.

S. R. Krishnakumar, M Liberati, C. Grazioli. M. Veronese, S. Turchini, P. Luches, S. Valeri, C. Carbone, J. of Magnetism and Magnetic Materials 310 (2007) 8-12.

Ajuba A. E., Ezugwu S. C., Asogwa P. U., Ezema F. I., Chalcogenide Letters 7(10) (2010) 573-579.

A. C. Canan, A. Ayse, Turkish Journal of Science and Technology 4(2), (2009) 121.

Ashwani Sharma, Pallavi, Sanjay Kumar, Nano Vision 1(3) (2011) 115-122.

Han X., Liu R., Chen W., Xu Z., Thin Solid Films 516 (2008) 4025- 4029.

A. E. Ajuba, S. C. Ezugwu, P. U. Asogwa, F. I. Ezema, Chalcogenide Letters 7(10) (2010) 573-579.

J. Tauc, Amorphous and Liquid Semiconductors, Plenum Press, New York, (1974).

Lokhande C. D., Lee E. H., Jung K. D., Joor O. S., Material Chemical and Physics 91 (2005) 200.

Urbach F., Phys. Rev. 92(5) (1953) 1324.

Cody G. D., J. Non-Cryst. Solids 141 (1992) 3-15.

J. Tauc, Amorphous and Liquid Semiconductors, Plenum Press, New York, (1974).

J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi 15 (1966) 627-637.

S. K. O'Leary, S. Zukotynski, J. M. Perz, J. Non-Cryst. Solids 210 (1997) 249.

S. H. Wemple, M. DiDomenco, Physical Review B 3 (1971) 1338-1342. doi: 10. 1103/PhysRevB. 3. 1338.

Wemple S. H., Phys. Rev. B 7 (1973) 3767-3777.

Atyia H. E., Optoelectron. Adv. M. 8 (2006) 1359-1366.

M. Caglar, S. Ilican, Y. Calgan, Y. Sahin, F. Yakuphanoglu, D. Hur, Spectrochimica Acta A 71(2) (2008) 621-627, doi: 10. 1016/j. saa. 2008. 01. 022.

Wemple S. H., Di Domenico J. Appl. Phys. 40 (2) (1969) 720-734.

Nadir Fadhil Habubi, Sami Salmann Chiad, Saad Farhan Oboudi, Ziad Abdulahad Toma, International Letters of Chemistry, Physics and Astronomy 4 (2013) 1-8.

Show More Hide