Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 11 > Cover of Cylinder Lattice Plastic Convert into...
< Back to Volume

Cover of Cylinder Lattice Plastic Convert into Fuel

Full Text PDF

Abstract:

Waste plastic of cylinder lattice to liquid fuel production process was performing two step processes. 1st step process was perform muffle furnace with ceramic crucible and 2nd step process was perform glass reactor with condensation unit. Thermal degradation process was performing with furnace and temperature was 410 °C and reactor temperature was 420 °C. Muffle furnace was use for solid hard shape of plastic melting purpose and glass reactor was use for liquid slurry to produce vapor purpose. Liquid slurry to produce vapor was condensed and collected liquid fuel and fuel density is 0.75 g/ml. Liquid fuel production conversation rate was 71.05%. Fuel was analysis by GC/MS and carbon chains obtain C3 to C23 from GC/MS chromatogram. Fuel color is light yellow and fuel is ignited.

Info:

Periodical:
International Letters of Chemistry, Physics and Astronomy (Volume 11)
Pages:
17-30
Citation:
M. Sarker and M. M. Rashid, "Cover of Cylinder Lattice Plastic Convert into Fuel", International Letters of Chemistry, Physics and Astronomy, Vol. 11, pp. 17-30, 2013
Online since:
September 2013
Export:
Distribution:
References:

[1] R. W. J. Westerhout, J. Waanders, J. A. M. Kuipers, W. P. M. van Swaaij, Ind. Eng. Chem. Res. 37 (1998) 2293-2300.

[2] Yoshio Uemichi, Junko Nakamura, Toshihiro Itoh, Masatoshi Sugioka, Ind. Eng. Chem. Res. 38 (1999) 385-390.

DOI: https://doi.org/10.1021/ie980341+

[3] Scott G., Atmospheric Oxidation and Antioxidants, Elsevier: Amsterdam 1965, pp.272-282.

[4] Carlsson D. J., Wiles D. M., Encyclopedia of Polymer Science and Engineering, 2nd ed.; Wiley: New York 1986; Vol. 4, pp.631-696 and references therein.

[5] Guillet J. E., Norrish R. G. W., Nature 173 (1954) 625-627.

[6] Hartley G. H, Guillet J. E., Macromolecules 1 (1968) 165-170.

[7] Scott G., Atmospheric Oxidation and Antioxidants; Elsevier: New York 1965; Chapters 4 and 5, pp.282-296.

[8] Al-Malaika S., Scott G., Degradation and Stabilisation of Polyolefins; Allen, N. S., Ed.; Applied Science Publishers: London, 1983; Chapters 6 and 7.

[9] Carlsson D. J., Garton A., Wiles D. M., DeVelopments in Polymer Stabilisation-1, Scott, G., Ed.; Applied Science Publishers: London 1979; pp.220-221.

[10] Scott G., DeVelopments in Polymer Stabilisation-4, Scott, G., Ed.; Applied Science Publishers: London 1981; Chapter 1.

[11] Al-Malaika, S., Chakraborty K. B., Scott G., DeVelopments in Polymer Stabilisation-6, Scott, G., Ed.; Applied Science Publishers: London 1983; hapter 3.

[12] Grassie N, Scott G., Polymer Degradation and Stabilisation, Cambridge University Press: Cambridge (1985).

[13] Scott G.,. Atmospheric Oxidation and Antioxidants, 2nd ed.; Scott, G., Ed.; Elsevier: New York 1993; Vol. II, Chapters 3, 5, 8, and 9.

[14] Scott G., Antioxidants in chemistry, technology, medicine and nutrition, Albion Publishers: 1997; Chapters 1, 3, and 4.

[15] Gerald Scott, David M. Wiles, American Chemical Society 2(3), (2001) 615-622.

[16] Scott G., Polymers and the EnVironment, Royal Society of Chemistry: Cambridge 1999; Chapter 2.

[17] Gilead D., Scott G., DeVelopments in Polymer Stabilisation-5, Scott, G., Ed.; Elsevier Applied Science Publishers: London 1982; Chapter 4.

[18] Scott G., Trends Polym. Sci. 5 (1997) 361-368.

[19] Gilead D., In Degradable Polymers: Principles and Applications, Scott, G., Gilead, D., Eds.; Chapman & Hall: London 1995; Chapter 10.

[20] Fabbri A., Degradable Polymers: Principles and Applications, Scott, G., Gilead, D., Eds.; Chapman & Hall: London 1995; Chapter 11.

[21] Manos G., Garforth A., Dwyer J., Ind. Eng. Chem. Res. 39 (2000) 1203.

[22] Uemichi Y., Kashiwaya Y., Tsukidate M., Ayame A., Kanoh H., Bull. Chem. Soc. Japan 56 (1983) 2768.

[23] Audisio G., Bertini F., Beltrame P. L., Carniti P., Makromol. Chem. -Macromol. Symp. 57 (1992) 191.

[24] Ohkita H., Nishiyama R., Tochihara Y., Mizushima T., Kakuta N., Morioka Y., Ueno A., Namiki Y., Tanifuji S., Katoh H., Sunazyka H., Nakayama R., Kuroyanagi T., Ind. Eng. Chem. Res. 32 (1993) 3112.

DOI: https://doi.org/10.1016/b978-1-4832-8381-4.50170-0

[25] Ng S. H., Seoud H., Stanciulescu M., Sugimoto Y., Energy Fuels 9 (1995) 735.

[26] Shabtai J., Xiao X., Zmierczak W., Energy Fuels 11 (1997) 76.

[27] Arandes J. W.; Abajo I.; Lopez-Valerio D.; Fernandez I.; Azkoiti M. J.; Olazar M.; Bilbao J., Ind. Eng. Chem. Res. 36 (1997) 4523.

DOI: https://doi.org/10.1021/ie970096e

[28] Arguado J., Sotelo J. L., Serrano D. P., Calles J. A., Escola J. M., Energy Fuels 11 (1997) 1225.

[29] Sharratt P. N., Lin Y. -H., Garforth A. A., Dwyer J., Ind. Eng. Chem. Res. 36 (1997) 5118.

[30] Garforth A. A., Lin Y. -H., Sharratt P. N., Dwyer J., Appl. Catal. A 169 (1998) 331.

[31] George Manos, Arthur Garforth, John Dwyer, Ind. Eng. Chem. Res. 39 (2000) 1198-1202.

DOI: https://doi.org/10.1021/ie990512q

[32] Plastics Recycling. In Uhlmann's Encyclopedia of Industrial Chemistry; VCH: Weinheim 1992; Vol. A21, pp.64-68.

[33] Menges G., Fischer R., Lackner V., Int. Polym. Process. 7 (1992) 291-302.

[34] Pinto F., Franco C., Andre R., Tavares C., Dias M., Gulyurtlu I. Cabrita I., Fuel 82 (2003) 1967-(1976).

[35] Gebauer M., Pfitzner R., Dommaschk V., Schneider J., Reuss J.; Wolf B., Meissner R., Wrackmeyer T., Patent DE 4329436, (1995).

[36] Tsuji T., Okajima S., Sasaki A., Masuda T., J. Chem. Eng. Japan 38 (2005) 859-864.

[37] Stefan Czernik, Richard J. French, Energy & Fuels 20 (2006) 754-758.

Show More Hide