This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] P. Reiter, Climate change and mosquito-borne disease, Environ. Health Perspect. 109(suppl 1) (2001) 141-161.
DOI: https://doi.org/10.1289/ehp.01109s1141[2] R.P. Lane, R.W. Crosskey, Medical Insects and Arachnids, British Museum Edition. Chapman & Hall, London, UK 50, (1993).
[3] K.J. Gaston, E. Hudson, Regional patterns of diversity and estimates of global insect species richness, Biodiversity and Conservation. 3 (1994) 493-500.
[4] D.H. Foley, L. M Rueda, R.C. Wilkerson, Insight into global mosquito biogeography from country species records, J. Med. Entomol. 44(4) (2007) 554-567.
[5] S. Manguin, C. Boete, Global impact of mosquito biodiversity, human vector-borne diseases and climate change, in: A. Lopez–Pujol (Ed. ), The importance of biological interactions in the study of biodiversity, Intech, Croatia, 2011, pp.27-50.
DOI: https://doi.org/10.5772/22970[6] Information on: http: /www. who. int/water_sanitation_health/resources/vector007to28. pdf. Accessed: 2/10/(2016).
[7] C. Sokhna, M.O. Ndiath, C. Rogier, The changes in mosquito vector behaviour and the emerging resistance to insecticides will challenge the decline of malaria, Clin. Microbiol. Infect. 19 (2013) 902–907.
[8] C. Peterson, J. Coats, Insect repellents-past, present and future, Pesticide Outlook. 12(4) (2001) 154-158.
DOI: https://doi.org/10.1039/b106296b[9] V.G. Dethier, Repellents, Annu. Rev. Entomol. 1 (1956) 181–202.
[10] M.B. Isman, Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world, Annu. Rev. Entomol. 51 (2006) 45–66.
[11] B. Pitasawat et al., Repellency of aromatic turmeric Curcuma aromatica under laboratory and field conditions, J. Vector Ecol. 28 (2003) 234–240.
[12] Information on http: /www. malariasite. com/history-parasites.
[13] J. Cano et al., The global distribution and transmission limits of lymphatic filariasis: past and present, Parasit. Vectors. 7 (2014) 466- 485.
[14] A. Buck, Filariasis, in: T.G. Strickland, Hunter's Tropical Medicine, 7th Edition, W.B. Saunders Company, Baltimore, USA, (1991).
[15] J.W. Mak, Epidemiology of lymphatic filariasis, Ciba Foundation Symposium. 127 (1987) 5-14.
DOI: https://doi.org/10.1002/9780470513446.ch2[16] S. Manguin et al., Review on global co-transmission of human Plasmodium species and Wuchereria bancrofti by Anopheles mosquitoes, Infection, Genetics and Evolution. 10 (2010) 159-177.
DOI: https://doi.org/10.1016/j.meegid.2009.11.014[17] Information on www. cdc. gov/parasites.
[18] N. Pages et al., Scientific review on mosquitoes and mosquito-borne disease, Scientific Report submitted to EFSA, (2009).
[19] M.S. Mustafa et al., Discovery of fifth serotype of dengue virus (DENV-5): A new public health dilemma in dengue control, Med. J. Armed Forces India. 71 (2015) 67–70.
[20] D.I.H. Simpson et al., Japanese encephalitis in Sarawak: virus isolation and serology in a Land Dyak village, Trans. R. Soc. Trop. Med. Hyg. 64(4) (1970) 503-510.
[21] D.I. Simpson et al., Arbovirus infections in Sarawak, October 1968-February 1970: Japanese encephalitis virus isolations from mosquitoes, Ann. Trop. Med. Parasitol. 68 (1974) 393-404.
[22] M.T. Aliota et al., Culex pipiens and Aedes triseriatus mosquito susceptibility to Zika virus, Emerging Infectious Diseases. 22(10) (2016) 1857-1859.
DOI: https://doi.org/10.3201/eid2210.161082[23] L.J. Bruce-Chwatt, Essential malariology, William Heinemann Med Books Ltd, London, UK, (1980).
[24] S. Manguin et al., Biodiversity of malaria in the world, John Libbey Eurotext, Paris, France, (2008).
[25] J. Mouchet et al., Biodiversité du paludisme dans le monde, John Libbey Eurotext, Paris, France, (2004).
[26] R. Carter, K.N. Mendis, Evolutionary and historical aspects of the burden of Malaria, Clin. Microbio. Rev. 15 (2002) 564-594.
[27] G.H. Fisk, Malaria and the Anopheles mosquito in Canada, Can. Med. Assoc. J. 25(6) (1931) 679–683.
[28] E.C. Faust, The distribution of malaria in North America, Mexico, Central America and the West Indies, in: A Symposium on Human Malaria, with Special Reference to North America and the Caribbean Region, Washington, DC: American Association for the Advancement of Science, 1941, p.8.
DOI: https://doi.org/10.1093/aesa/34.4.855[29] P.C.C. Garnham, Malaria epidemics at exceptionally high altitudes in Kenya, Br. Med. Bull. 2 (1945) 456–457.
[30] A.T. Matson, The history of malaria in Nandi, East Afr. Med. J. 34 (1957) 431–441.
[31] Information on www. who. int.
[32] E.G. Westaway, J. Blok, Taxonomy and evolutionary relationships of flaviviruses, in: D.J. Gubler, G. Kuno (Eds. ), Dengue and dengue hemorrhagic fever, CAB International, New York, 1997, p.147–173.
[33] D.J. Gubler, The global emergence/resurgence of arboviral diseases as public health problems, Arch. Med. Res. 33 (2002) 330–342.
[34] M.G. Guzman, G. Kouri, Dengue: an update, Lancet Infect. Dis. 2(1) (2002) 33–42.
[35] D.J. Gubler, Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century, Trends Microbiol. 10 (2002) 100–103.
[36] S.B. Halstead, Dengue, The Lancet. 370(9599) (2007) 1644-1652.
[37] M. Vazeille et al., Low oral receptivity for dengue type 2 viruses of Aedes albopictus from Southeast Asia compared with that of Aedes Aegypti, Am. J. Trop. Med. Hyg. 68(2) (2003) 203-208.
[38] N.G. Gratz, Critical review of the vector status of Aedes albopictus, Medical &Veterinary Entomology. 18(3) (2004) 215-227.
DOI: https://doi.org/10.1111/j.0269-283x.2004.00513.x[39] A.M. Powers et al., Re-emergence of Chikungunya and O'nyong-nyong viruses: evidence for distinct geographical lineages and distant evolutionary relationships, J. Gen. Virol. 81(2) (2000) 471-479.
[40] M. Enserink, Infectious diseases. Massive outbreak draws fresh attention to little-known virus, Sci. 311(5764) (2006) 1085.
[41] G. Pialoux et al., Chikungunya, an epidemic arbovirosis, Lancet. Infect. Dis. 7(5) (2007) 319-327.
[42] K.A. Tsetsarkin et al., A single mutation in Chikungunya virus affects vector specificity and epidemic potential, PLoS Pathog. 3 (2007) 201-207.
DOI: https://doi.org/10.1371/journal.ppat.0030201[43] T.P. Monath, Japanese encephalitis - a plague of the Orient, N. Engl. J. Med. 319(10) (1988) 641-643.
[44] R.F. Darsie, Jr. R.A. Ward, Identification and geographical distribution of the mosquitoes of North America, North of Mexico, Mosq. Syst. Suppl. 1 (1981) 1–313.
[45] S.R. Christophers, Aëdes aegypti (L. ) the yellow fever mosquito: its life history, bionomics and structure, Cambridge University Press, Cambridge, (1960).
[46] F. Delaporte, The history of yellow fever: an essay on the birth of tropical medicine, MIT Press, Cambridge, (1991).
[47] J.S. Mackenzie et al., Emerging viral diseases of Southeast Asia and the Western Pacific, Emerg. Infect. Dis. 7 (2001) 497-504.
[48] W.C. Rappleye, Epidemiology of Japanese B Encephalitis. Epidemie Encephalitis: Third Report by the Matheson Commission, New York, Columbia University Press, (1939).
[49] R. Kono, K.H. Kim, Comparative epidemiological features of Japanese Encephalitis in the Republic of Korea, China (Taiwan) and Japan, Bull. Wld. Hlth. Org. 40 (1969) 263-277.
[50] T. Okuno, An epidemiological review of Japanese encephalitis, Wld. Hlth. Stat. Q. 31(2) (1978) 120-133.
[51] T. Umenai et al., Japanese encephalitis: current worldwide status, Bull. Wld. Hlth. Org. 63 (1985) 625-631.
[52] T. Solomon et al., Japanese encephalitis, J. Neurol. Neurosurg. Psych. 68(4) (2000) 405-415.
[53] D.S. Burke, C.J. Leake, Japanese encephalitis, in: T.P. Monath, The Arboviruses: Epidemiology and Ecology, CRC Press, Boca Raton, 1988, pp.63-92.
[54] E.L. Buescher, W.F. Scherer, Ecologic studies of Japanese encephalitis virus in Japan. IX. Epidemiologic correlations and conclusions, Am. J. Trop. Med. Hyg. 8 (1959) 719-722.
[55] Information on http: /www. mosquito. org/mosquito-borne-diseases.
[56] A. Blackwell, A.E. Stuart, B.A. Estambale, The repellent and anti-feedant activity of oil of Myrica gale against Aedes aegypti mosquitoes and its enhancement by the addition of salicyluric acid, Proc. Royal Coll. Phys. Edinburgh. 33 (2003).
[57] W. Choochote et al., Repellent activity of selected essential oils against Aedes aegypti, Fitoterapia. 78(5) (2007) 359–364.
DOI: https://doi.org/10.1016/j.fitote.2007.02.006[58] M. Brown, A.A. Hebert, Insect repellents: an overview, J. Am. Acad. Dermatol. 36 (1997) 243–249.
[59] T. Katz, J. Miller, A. Hebert, Insect repellents: historical perspectives and new developments, J. Am. Acad. Dermatol. 58 (2008) 865–871.
[60] M.S. Fradin, Insect repellents, in: S.E. Wolverton (Ed. ), Comprehensive dermatologic drug therapy, Saunders Elsevier, Indianapolis, 2007, pp.785-801.
[61] E.W. Kimani et al., Use of insecticide treated clothes for personal protection against malaria: a community trial, Malar. J. 5(1) (2006) 63.
[62] C.E. Schreck, D. Fish, T.P. McGovern, Activity of repellents applied to skin for protection against Amblyomma americanum and Ixodes scapularis ticks (Acari: Ixodidae), J. Am. Mosq. Control Assoc. 11(1) (1995) 136-140.
[63] M. Abramowitz, Picaridinea new insect repellent, Med. Lett. 47 (2005) 46-47.
[64] Information on: http: /www. dph. state. ct. us/BCH/infectiousdise/tickborne/tick. htm#DEET%20and%20ticks.
[65] N.R. Ambati et al., N, N- dialkyl -morpholin- 4 - carboxamide compounds as insect repelling agents and a process for their preparation, India, WO Patent App. PCT/IN2012/000, 003, (2012).
[66] C. Curtis et al., Natural and synthetic repellents, in: C.F. Curtis (Ed. ), Appropriate Technology in Vector Control, CRC Press, Florida, Chapter 4, (1989).
[67] D.S. Hebbalkar et al., Mosquito repellent activity of oils from Vitex negundo Linn leaves, Indian J. Med. Res. 95 (1992) 200-203.
[68] V.K. Dua et al., Repellency of Lantana camara (Vervanaceae) flowers against Aedes mosquitoes, J. Am. Mosq. Control Assoc. 12 (1996) 406-408.
[69] M.S. Fradin, J.F. Day, Comparative efficacy of insect repellents against mosquito bites, Engl. J. Med. 347 (2002) 13-18.
DOI: https://doi.org/10.1056/nejmoa011699[70] D.A. Collins, J.N. Brady, C.F. Curtis, Assessment of the efficacy of quelling as a mosquito repellent, Phytother. Res. 7 (1993) 17–20.
[71] A.A. Khan, H.I. Maibach, D.L. Skidmore, Addition of vanillin to mosquito repellents to increase protection time, Mosq. News. 35 (1975) 223–225.
[72] V.P. Sharma, M.A. Ansari, R.K. Razdan, Mosquito repellent action of neem (Azadirachta indica) oil, J. Am. Mosq. Control Assoc. 9(3) (1993) 359–360.
[73] N.G. Das et al., Evaluation of botanicals as repellents against mosquitoes, J. Vect. Borne Dis. 40 (2003) 49-53.
[74] H.A. Miot et al., Comparative study of the topical effectiveness of the Andiroba oil (Carapa guianensis) and DEET 50% as repellent for Aedes sp., Rev. Inst. Med. Trop. Sao Paulo. 46 (2004) 235-236.
[75] G. Schultz, C. Peterson, J. Coats, Natural insect repellents: activity against mosquitoes and cockroaches, in: A.M. Rimando, S.O. Duke (Eds. ), Natural products for pest management, ACS Symp, Am. Chem. Soc. Washington DC, 2006, pp.168-181.
[76] H.O. Lawal et al., Bioassay of herbal mosquito repellent formulated from the essential oil of plants, J. Nat. Prod. 5 (2012) 109-115.
[77] A.A. Anuar, N. Yusof, Methods of imparting mosquito repellent agents and the assessing mosquito repellency on textile, Fash. Text. 3(1) (2016) 1-14.
[78] N. Hill et al., Plant based insect repellent and insecticide treated bed nets to protect against malaria in areas of early evening biting vectors: double blind randomised placebo controlled clinical trial in the Bolivian Amazon, BMJ. 335(7628) (2007).
DOI: https://doi.org/10.1136/bmj.39356.574641.55[79] K. Karunamoorthi, S. Ramanujan, R. Rathinasamy, Evaluation of leaf extracts of Vitex negundo L. (Family: Verbenaceae) against larvae of Culex tritaeniorhynchus and repellent activity on adult vector mosquitoes, Parasitol. Res. 103 (2008) 545-550.
[80] N. Rani et al., Study of Citronella leaf based herbal mosquito repellents using natural binders, Curr. Res. Microbiol. Biotechnol. 1 (2013) 98-103.
[81] C.D. Chaudhari et al., Development and evaluation of efficacy of herbal mosquito repellent fast card, Int. J. Ayur. Herb Med. 6 (2016) 2162-2165.
[82] M. Blum et al., Natural insect repellent formula and method of making same, US Patent 5, 885, 600. U.S. Patent and Trademark Office, Washington DC, (1999).
[83] D. Kumar et al., An herbal mosquito repellent composition, WO Patent 2001076373 A1, (2001).
[84] G.N. Iyer, R.T. Sane, S. Menon, Insect repellent, US Patent 20040223998A1, Indian patent 209799, (2008).
[85] Information on www. euindiacoop. org/2009.
[86] A.M. Pohlit et al., Patent literature on mosquito repellent inventions which contain plant essential oils – a review, Planta Med. 77(6) (2011) 598–617.
[87] S.F. Salomon, D. Island, G.A. Salomon, Natural insect repellent compositions, US Patent 20130084347 A1, (2013).
[88] G. Kumaran et al., New insect repellents, Indian patent 268615, (2015).
[89] J.K. Trigg, Evaluation of a eucalyptus-based repellent against Anopheles spp. in Tanzania, J. Am. Mosq. Control Assoc. 12 (1996) 243–246.
[90] J.T. Chou, P.A. Rossignol, J.W. Ayres, Evaluation of commercial insect repellents on human skin against Aedes aegypti (Diptera: Culicidae), J. Med. Entom. 34 (1997) 624–630.
[91] Information on http: /www. picaridin. info.
[92] S.D. Rodriguez et al., The efficacy of some commercially available insect repellents for Aedes aegypti (Diptera: Culicidae) and Aedes albopictus (Diptera: Culicidae), J. Insect Sci. 15 (2015) 140.
DOI: https://doi.org/10.1093/jisesa/iev125[93] M.F. Maia, S.J. Moore, Plant-based insect repellents: a review of their efficacy, development and testing, Malar. J. 10(Suppl 1) (2011).
[94] M.S.N. Ranasinghe, L. Arambewela, S. Samarasinghe, Development of herbal mosquito repellent formulations, Int. J. Collab. Res. Internal Med. Pub. Health. 8 (2016) 341-380.
[95] C.E. Schreck, B.A. Leonhardt, Efficacy assessment of quelling, a mosquito repellent from China, J. Am. Mosq. Cont. Assoc. 7 (1991) 433–436.
[96] Information on https: /pubchem. ncbi. nlm. nih. gov/search/#collection=compounds.
[97] J.L. Sanford, V.D.C. Shields, J.C. Dickens, Gustatory receptor neuron responds to DEET and other insect repellents in the yellow fever mosquito, Aedes aegypti, Naturwissenschaften. 100(3) (2013) 269-273.
[98] Y. Kwon et al., Drosophila TRPA1 channel is required to avoid the naturally occurring insect repellent citronellal, Curr. Biol. 20 (2010) 1672–1678.
DOI: https://doi.org/10.1016/j.cub.2010.08.016[99] S. Licciardi et al., Lethal and behavioural effects of three synthetic repellents (DEET, IR3535 and KBR 3023) on Aedes aegypti mosquitoes in laboratory assays, Med. Vet. Entomol. 20 (2006) 288–293.
DOI: https://doi.org/10.1111/j.1365-2915.2006.00630.x[100] S. Sathantriphop et al., Behavioral responses of Aedes aegypti, Aedes albopictus, Culex quinquefasciatus, and Anopheles minimus against various synthetic and natural repellent compounds, J. Vector Ecol. 39 (2014) 328–339.
[101] O.J.T. Briet, N. Chitnis, Effect of changing mosquito host searching behaviour on the cost effectiveness of a mass distribution of long lasting, insecticidal nets: a modelling study, Malaria J. 12 (2013) 215.
[102] M.L. Gatton et al., The importance of mosquito behavioural Adaptations to Malaria control in Africa, Evolution. 67(4) (2013) 1218–1230.
[103] D. Martinez-Torres, F. Chandre, M.S. Williamson, Molecular characterization of pyrethroid knock down resistance (Kdr) in the major malaria vector Anopheles gambiae s. s., Insect Mol. Biol. 7 (1998) 179–184.
[104] F. Chandre et al., Pyrethroid cross resistance spectrum among populations of Anopheles gambiae s. s. from Cote d'Ivoire, J. Am. Mosq. Control Assoc. 15(1) (1999) 53–59.
[105] H. Ranson et al., Identification of a point mutation in a voltage in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids, Insect Mol. Biol. 9(5) (2000) 491–497.
[106] L.A. Hummelbrunner, M.B. Isman, Acute, sublethal, antifeedant and synergistic effects of monoterpenoid essential oil compounds on the tobacco cutworm, Spodoptera litura (Lep. Noctuidae), J. Agric. Food Chem. 49(2) (2001) 715–720.
[107] Y.G. Gillij, R.M. Gleiser, J.A. Zygadlo, Mosquito repellent activity of essential oils of Aromatic plants growing in Argentina, Bioresour. Technol. 99 (2008) 2507–2515.
[108] Information on http: /www. cdc. gov/ncidid/dvbid/westnile.
[109] Information on http: /www. prnewswire. com/news-releases.
[110] Information on http: /economictimes. indiatimes. com/industry/cons-products/fmcg.
[111] Information on http: /www. mbarendezvous. com/general-awareness/mosquito-repellent-market-in-india.
[112] N. Das, Defence weaponry against mosquitoes, Sci. Rep. 4 (2010) 47–48.
[113] J. Varma, N.K. Dubey, Prospectives of botanical and microbial products as pesticides of tomorrow, Curr. Sci. 76 (1999) 172-179.
[114] A.O. Oyedele et al., formulation of an effective mosquito- repellent topical product from lemongrass oil, Phytomedicine. 9(3) (2002) 259–262.
DOI: https://doi.org/10.1078/0944-7113-00120[115] A. Tawatsin et al., Repellency of volatile oils from plants against three mosquito vectors, J. Vector Ecol. 26 (2001) 76–82.
[116] N. Das et al., Field evaluation of herbal mosquito repellents, J. Commun. Dis. 31 (1991) 241–245.
[117] W.C. Hsieh, C.P. Chang, Y.L. Gao, Controlled release properties of Chitosan encapsulated volatile Citronella Oil microcapsules by thermal treatments, Colloids and Surf. B. 53(2) (2006) 209–214.
[118] U. Sakulku et al., Characterization and mosquito repellent activity of citronella oil nano emulsion, Int. J. Pharm. 372 (2009) 105-111.
[119] O. Nuchuchua et al., In vitro characterization and mosquito (Aedes aegypti) repellent activity of essential oils loaded nano emulsions, AAPS PharmSciTech. 10(4) (2009) 1234-1242.
[120] S.J. Moore et al., A low-cost repellent for malaria vectors in the Americas: results of two field trials in Guatemala and Peru, Malar. J. 6 (2007) 101.
DOI: https://doi.org/10.1186/1475-2875-6-101[121] Y. Trongtokit et al., Laboratory and field trial of developing medicinal local Thai plant products against four species of mosquito vectors, Southeast Asian J. Trop. Med. Public Health. 35 (2004) 325-333.
[122] G.C. Muller et al., Indoor protection against mosquito and sand fly bites: a comparison between citronella, linalool and geraniol candles, J. Am. Mosq. Control Assoc. 24 (2008) 150-153.
DOI: https://doi.org/10.2987/8756-971x(2008)24[150:ipamas]2.0.co;2[123] M.A. Ansari et al., Larvicidal and mosquito repellent activities of Pine (Pinus longifolia, Family: Pinaceae) oil, J. Vect. Borne Dis. 42 (2005) 95-99.
[124] H. Hao et al., Host-seeking and blood-feeding behaviour of Aedes albopictus (Diptera: Culicidae) exposed to vapors of geraniol, citral, citronellal, eugenol, or anisaldehyde, J. Med. Entomol. 45 (2008) 533-539.
DOI: https://doi.org/10.1603/0022-2585(2008)45[533:habboa]2.0.co;2[125] S.A. Ritchie, C.R. Williams, B.L. Montgomery, Field evaluation of new mountain sandalwood mosquito sticks and new mountain sandalwood botanical repellent against mosquitoes in North Queensland, Australia, J. Am. Mosq. Control Assoc. 22 (2006).
[126] U.R. Bernier et al., Comparison of contact and spatial repellence of catnip oil and N, N-Diethyl-3- methylbenzamide (Deet) against mosquitoes, J. Med. Entomol. 42 (2005) 306-311.
DOI: https://doi.org/10.1093/jmedent/42.3.306[127] L.S. Nerio, J. Oliver-Verbel, E. Stashenko, Repellent activity of essential oils: a review, Bioresource Technol. 101 (2009) 372- 378.