This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] Y. Nigam et al., Physiological changes associated with aging and immobility, Journal of Aging Research. 2012 (2012) 468-469.
[2] G.C. Sieck, Physiology of aging, Journal of Applied Physiology. 93 (2003) 1333-1334.
[3] K. Anil, A. Prakash, S. Dogra, Naringin alleviates cognitive impairment, mitochondrial dysfunction and oxidative stress induced by D-galactose in mice, Food and Chemical Toxicology. 48(2) (2010) 626–632.
DOI: https://doi.org/10.1016/j.fct.2009.11.043[4] D. Iuliss et al., A proteomic approach in the study of an animal model of Parkinson's disease, Clin. Chim. Acta. 357 (2005) 202-209.
[5] A. Castegna et al., Proteomic identification of oxidatively modified proteins in Alzheimer's disease brain. Part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase, Free Radical Biol. Med. 33(4) (2002) 562-571.
DOI: https://doi.org/10.1016/s0891-5849(02)00914-0[6] W.C. Quan, G.Q. Yang, Betacyanins from Portulaca oleracea L. ameliorate cognition deficits and attenuate damage induced by D-galactose in the brains of senescent mice, Phytomedicine. 17 (2010) 527-532.
DOI: https://doi.org/10.1016/j.phymed.2009.09.006[7] T.N. Hacer et al., Effect of Capparis spinosa L. on cognitive impairment induced by D-galactose in mice via inhibition of oxidative stress, Turkish Journal of Medical Sciences. 45 (2015) 1127-1136.
DOI: https://doi.org/10.3906/sag-1405-95[8] D.Y. Yoo et al., Melatonin improve D-galactose–induced aging effects on behavior, neurogenesis and lipid peroxidation in the mouse dentate gyrus via increasing pCREB expression, J. Pineal Res. 52(1) (2012) 21-28.
DOI: https://doi.org/10.1111/j.1600-079x.2011.00912.x[9] K. Anil, A. Prakash, S. Dogra, Centella asiatica attenuates D-galactose-induced cognitive impairment, oxidative and mitochondrial dysfunction in mice, International Journal of Alzheimer's Disease. 2011 (2011).
DOI: https://doi.org/10.4061/2011/347569[10] A.M. Agbor, S. Naidoo, A.M. Mbia, The role of traditional in healers tooth extactions in Lekie Division, Cameroon, Journal of Ethnobiology and Ethnomedecine. 7(1) (2011) 15.
DOI: https://doi.org/10.1186/1746-4269-7-15[11] P.J. Wabo et al., In vitro anthelminthic efficacy of Dichrocephala integrifolia (Asteraceae) extracts on the gastro-intestinal nematode parasite of mice: Heligmosomoides bakeri (Namatoda, Heligmosomadae), Asian Pasific Journal of Tropical Biomedicine. 3(2) (2013).
DOI: https://doi.org/10.1016/s2221-1691(13)60032-5[12] F.T. Ngueguim et al., Dichrocephala integrifolia (Linn. f. ) O. Kuntze (Asteraceae) leaves aqueous extract prevents ethanol-induced liver damage in rats, Pharmacologia. 7 (2016) 337-343.
[13] E. Noumi, Treating asthma with medicinal plants. An ethnomedicinal case study from Baré-Bakem, Nkongsamba Region, Cameroon, Syllabus Review. 1 (2009) 10-15.
[14] E. Ngo Bum et al., The aquoeus extract of Terminelia macroptera posses anxiolytic and antipyretic activities in mice, Asian Journal of Pharmaceutical and Health Science. 2(4) (2012) 555-561.
[15] A.C. Sharma, S.K. Kulkarni, Evaluation of learning and memory mechanisms employing elevated plus-maze in rats and mice, Progress in Neuro-Psychopharmacology and Biological Psychiatry. 16(1) (1992) 117–125.
DOI: https://doi.org/10.1016/0278-5846(92)90014-6[16] R. Morris, Developments of a water-maze procedure for studying spatial learning in the rat, Journal of Neuroscience Methods. 11(1) (1984) 47-60.
DOI: https://doi.org/10.1016/0165-0270(84)90007-4[17] M.M. Bradford, A rapid and sentitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry. 72(1-2) (1976) 248-254.
DOI: https://doi.org/10.1006/abio.1976.9999[18] S.K. Nelson, S.K. Bose, J.M. McCord, The toxicity of high-dose superoxide dismutase suggest that superoxide can both initiate and terminate lipid peroxidation in the reperfused heart, Free Radical Biology and Medicine. 16(2) (1994) 195-200.
DOI: https://doi.org/10.1016/0891-5849(94)90143-0[19] A.L. Fotio et al., Acute and chronic anti-inflammatory properties of the stem bark aqueous and methanol extracts of Sclerocarya birrea (Anarcardiaceae), Inflammo Pharmacology. 17(4) (2009) 229-237.
DOI: https://doi.org/10.1007/s10787-009-0011-2[20] L.G. Ellman, Tissue sulfhydryl groups, Archives of Biochemistry and Biophysics. 82(1) (1959) 70-77.
DOI: https://doi.org/10.1016/0003-9861(59)90090-6[21] Y. Zhao, B. Zhao, Review article oxidative stress and the pathogenesis of Alzheimer's disease, Oxidative Medicine and Cellular Longevity. 2013 (2013) 316523.
DOI: https://doi.org/10.1155/2013/316523[22] G. Perry, A. D. Cash, M.A. Smith, Alzheimer disease and oxidative stress, J. Biomed. Biotechnol. 2(3) (2002) 120–123.
[23] D. Dinesh, V. Kumar, Memory-enhancing activity of palmatine in mice using elevated plus maze and Morris water maze, Advances in Pharmacological Sciences. 2012 (2012).
DOI: https://doi.org/10.1155/2012/357368[24] N. Hadzi-Petrushev et al., D-galactose induced inflammation lipid peroxidation and platelet activation in rats, Cytokine. 69 (2014) 150–153.
DOI: https://doi.org/10.1016/j.cyto.2014.05.006[25] L.M. Sayre, G. Perry, M.A. Smith, Oxidative stress and neurotoxicity, Chem. Res. Toxicol. 21(1) (2008) 172–188.
[26] X. Cui et al., Chronic systemic D-galactose exposure induces memory loss, neurodegeneration, and oxidative damage in mice: protective effects of R-alpha-lipoic acid, J. Neurosci. Res. 84 (2006) 647–654.
DOI: https://doi.org/10.1002/jnr.20899