Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

IJPPE > Volume 4 > Identification and Quantification of Total...
< Back to Volume

Identification and Quantification of Total Polyphenols in Plants with Bioactive Potentially

Full Text PDF

Abstract:

This meaning of this specific work is to identify and quantify the polyphenolic compounds that exist in plants with bioactive potentially. The study was monitorising 16 different plants: bilberry (Vaccinium myrtillus), artichoke (Cynara scolymus), chicory (Cichorium intybus), dumb (Teucrium chamaedrys), fennel (Foeniculum vulgare), thorn (Xanthium spinosum), juniper (Juniperus communis), mint (Mentha), cranberry (Vaccinium vitis-idaea), hawthorn (Crataegus monogyna), wormwood (Artemisia absinthium), willow herb (Epilobium), lemon balm (Melissa officinalis), St. John's wort (Hypericum perforatum), oregano (Origanum vulgare), centaury (Centaurium erythraea). The total polyphenolic compound was determined on spectrophotometric method, Folin-Ciocalteu. The polyphenols have a very wide range value starting on low amounts on centaury (Centaurium erythraea) 271.613 mg/L and reaching highest values of 5975.616 mg/L in wormwood (Artemisia absinthium). The results can be use in the design of digestive drinks in the food industry due to higher concentration of total polyphenols in the studied plants.

Info:

Periodical:
International Journal of Pharmacology, Phytochemistry and Ethnomedicine (Volume 4)
Pages:
47-51
Citation:
D. Sandru et al., "Identification and Quantification of Total Polyphenols in Plants with Bioactive Potentially", International Journal of Pharmacology, Phytochemistry and Ethnomedicine, Vol. 4, pp. 47-51, 2016
Online since:
August 2016
Export:
Distribution:
References:

[1] S. Oancea, C. Grosu, Effect of Vaccinium myrtillus anthocyanin extract on lipid oxidation in cod liver oil, Rom. Biotech. Lett. 18(1) (2013) 7897-7903.

[2] V.T. Saponjac, J. Canadanovic-Brunet, G. Cetkovic, Dried bilberry (Vaccinium myrtillus L. ) extract fractions as antioxidants and cancer cell growth inhibitors, LWT- Food Science and Technology. 61 (2: (2014) 615–621.

DOI: https://doi.org/10.1016/j.lwt.2014.04.021

[3] R. Bundy et al., Artichoke leaf extract (Cynara scolymus) reduces plasma cholesterol in otherwise healthy hypercholesterolemic adults: a randomized, double blind placebo controlled trial, Phytomedicine. 15(9) (2008) 668-75.

DOI: https://doi.org/10.1016/j.phymed.2008.03.001

[4] B. Wider et al., Artichoke leaf extract for treating hypercholesterolaemia, Cochrane Database Syst Rev. (2013).

[5] R.A. Street, J. Sidana, G. Prinsloo, Cichorium intybus: traditional uses, phytochemistry, pharmacology, and toxicology, Evidence-Based Complementary and Alternative Medicine, Volume 2013 (2013) Article ID 579319.

DOI: https://doi.org/10.1155/2013/579319

[6] Q. Wang, J. Cui, Perspectives and utilization technologies of chicory (Cichorium intybus L. ): a review, African Journal of Biotechnology. 10(11) (2011) 1966–(1977).

[7] E. Bedir, R. Manyam, I.A. Khan, Neo-clerodane diterpenoids and phenylethanoid glycosides from Teucrium chamaedrys L., Phytochemistry. 63 (2003) 977–83.

DOI: https://doi.org/10.1016/s0031-9422(03)00378-9

[8] C. Nencini et al., Hepatotoxicity of Teucrium chamaedrys L. decoction: role of difference in the harvesting area and preparation method, Indian J Pharmacol. 46(2) (2014) 181–184.

DOI: https://doi.org/10.4103/0253-7613.129313

[9] R.A. Manzoor et al., Foeniculum vulgare: A comprehensive review of its traditional use, phytochemistry, pharmacology, and safety, Arabian Journal of Chemistry. (2012).

[10] R.L. Quiroga, Meneses, R.W. Bussmann, Medicinal ethnobotany in Huacareta (Chuquisaca, Bolivia), Journal of Ethnobiology and Ethnomedicine. 8(1) (2012) 1.

DOI: https://doi.org/10.1186/1746-4269-8-29

[11] B.S. Gergely et al., Ethnoveterinary practices of Covasna County, Transylvania, Romania, Journal of Ethnobiology and Ethnomedicine. 11(1) (2015).

DOI: https://doi.org/10.1186/s13002-015-0020-8

[12] S. Grasser, C. Schunko, C. R. Vogl, Gathering tea, – from necessity to connectedness with nature. Local knowledge about wild plant gathering in the Biosphere Reserve Grosses Walsertal (Austria), Journal of Ethnobiology and Ethnomedicine. 8(1) (2012).

DOI: https://doi.org/10.1186/1746-4269-8-31

[13] A.N. Adham, Comparative extraction methods, phytochemical constituents, fluorescence analysis and HPLC validation of rosmarinic acid content in Mentha piperita, Mentha longifolia and Osimum basilicum, Journal of Pharmacognosy and Phytochemistry. 3(6) (2015).

DOI: https://doi.org/10.5539/ijc.v7n2p170

[14] A. Calderone, L. Castagnoli & G. Cesareni, Mentha: a resource for browsing integrated protein-interaction networks, Nature Methods. 10 (2013) 690–691.

DOI: https://doi.org/10.1038/nmeth.2561

[15] K.Y. Ho et al., Antioxidant Activity of Tannin Components from Vaccinium vitis-idaea L. Journal of Pharmacy and Pharmacology. 51(9) (1999) 1075–1078.

[16] M.E. Hoda et al., Stimulation of AMP-activated protein kinase and enhancement of basal glucose uptake in muscle cells by quercetin and quercetin glycosides, active principles of the antidiabetic medicinal plant Vaccinium vitis-idaea, Molecular Nutrition and Food Research. 54(7) (2010).

DOI: https://doi.org/10.1002/mnfr.200900218

[17] O. Raspé, J.R. Kohn, S-allele diversity in Sorbus aucuparia and Crataegus monogyna (Rosaceae: Maloideae), Heredity. 88(6) (2002) 458–465.

DOI: https://doi.org/10.1038/sj.hdy.6800079

[18] A. Castaneda-Ovando et al., Chemical studies of anthocyanins: A review, Food Chem. 113(4) (2009) 859-871.

[19] V.A. Luyckx, S. Naicker, Acute kidney injury associated with the use of traditional medicines, Nature Clinical Practice Nephrology. 4(12) (2008) 664–671.

DOI: https://doi.org/10.1038/ncpneph0970

[20] W. N. Arnold, Absinthe, Scientific American. 260 (1989) 112–117.

[21] S. Knapp, Botany: Hitchers, outcasts and wasteland beauties, Epilobium angustifolium, Nature. 467 (2010) 1037.

DOI: https://doi.org/10.1038/4671037a

[22] D.O. Kennedy, G. Wake, A.B. Scholey, Modulation of Mood and Cognitive Performance Following Acute Administration of Single Doses of Melissa Officinalis (Lemon Balm) with Human CNS Nicotinic and Muscarinic Receptor-Binding Properties, Neuropsychopharmacology. 28 (2003).

DOI: https://doi.org/10.1038/sj.npp.1300230

[23] M.Y. Kim, B Y Park, M Yoon, The anti-angiogenic herbal composition Ob-X inhibits adipose tissue growth in obese mice, International Journal of Obesity. 34 (2010) 820–830.

DOI: https://doi.org/10.1038/ijo.2010.13

[24] J. Tian, F. Zhang, H. Wang, Antidepressant-like activity of adhyperforin, a novel constituent of Hypericum perforatum L., Scientific Reports. 4 (2014) 5632.

DOI: https://doi.org/10.1038/srep05632

[25] P.J. Nathan, The experimental and clinical pharmacology of St John's Wort (Hypericum perforatum L. ) Molecular Psychiatry. 4 (1999) 333–338.

DOI: https://doi.org/10.1038/sj.mp.4000557

[26] Jain S. K., Gynodioecy in Origanum vulgare: Computer Simulation of a Model, Nature. 217 (1968) 764–765.

DOI: https://doi.org/10.1038/217764a0

[27] C.L. Quave, A. Pieroni, A reservoir of ethnobotanical knowledge informs resilient food security and health strategies in the Balkans, Nature Plants. 1(2) (2015) 14021.

DOI: https://doi.org/10.1038/nplants.2014.21

[28] J.P. Grime, J. M. L. Mackey, D. J. Read, Floristic diversity in a model system using experimental microcosms, Nature. 328 (1987) 420–422.

DOI: https://doi.org/10.1038/328420a0
Show More Hide