This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] S. Perez, D. Samain, Structure and engineering of celluloses, Adv. Carbohydr, Chem. Biochem. 64 (2010) 5-116.
[2] M. Z. Rong et al., The effect of fiber treatment on the mechanical properties of unidirection sisal-reinforced epoxy composites, Compos. Sci. Technol. 61 (2001) 1437-1447.
[3] E. I. Filpponen, The synthetic strategies for unique properties in cellulose nanocrystal materials, PhD Thesis, 2009; North Carolina State University, Page 1. URI: http: /www. lib. ncsu. edu/resolver/ 1840. 16/4626.
[4] D. Wandera, S. R. Wickramasinghe, S. M. Husson, Stimuli-responsive membranes, J. Membr. Sci. 357 (2010) 6–35.
[5] Y. Nishio, Material functionalization of cellulose and related polysaccharides via diverse microcompositions, Adv. Polym. Sci. 205 (2006) 97-151.
[6] A. Carlmark, E. E. Malmstrom, ATRP Grafting from Cellulose Fibers to Create Block-Copolymer Grafts, Biomacromol. 4 (2003) 1740-1745.
[7] B. Biswal, J. Anurekha, Drug-excipient Interaction Study for Apple Cider Vinegar with 20 Potential Excipients using Modern Analytical Techniques, Asian J. Pharma. 10(1) (2016) 65-71.
[8] P. Crowley, L. G. Martini, Drug–Excipient Interaction. Pharmaceutical Technology Europe, Advanstar. (2001) 0582.
[9] S. A. Muratova et al., Studying interactions in microcrystalline-drug systems, Pharm. Chem. J. 36 (2002) 619-621.
[10] R. Fangueiro, S. Rana, Natural Fibres: Advances in Science and Technology Towards Industrial Applications, (Edited) Springer, (2016).
[11] R. Kolakovic et al., Evaluation of drug interactions with nanofibrillar cellulose, Eur J Pharm Biopharm. 85 (2013) 1238-44.
[12] N. D. Burkhanova et al., Interaction of drugs with microcrystalline cellulose at the molecular and supramolecular levels. Chem. Nat. Comp. 33(3) (1997) 440-446.
[13] S. Al-Nimry, S. Assaf, I. Jalal, N. Najib, Adsorption of ketotifen onto some pharmaceutical excipients, Int. J. Pharm. 149 (1997) 115-121.
[14] M.S. El-Samaligy, G.M. El-Mahrouk. T.A. El-Kirsh, Adsorption-desorption effect of microcrystalline cellulose on ampicillin and amoxicillin, Int. J. Pharm. 31 (1986) 137-144.
[15] R.M. Franz, G.E. Peck, In vitro adsorption –desorption of fluphenazine dihydrochloride and promehazine hydrochloride by microcrystalline cellulose, J. Pharm. Sci. 71 (1982) 1193-1199.
[16] D. N. T. Kumar et al., Purified and Bio-polished Cotton Fibers as DNA-Streptavidin Tags for Bio-applications, using a Novel Approach, Inter. J. Eng. Res. Appl. (2012) 1117-1123.
[17] A. Cavaco–Pauloa, J. Morgadoa, J. Andreausb, D. Kilburn, Interactions of cotton with CBD peptides, Enzy. Micro. Technol. 25 (1999) 639–643.
[18] A. R. Khan, H. Tahir, F. Uddin, U. Hameed, Adsorption of Methylene Blue from aqueous Solution on the Surface of Wool Fiber and Cotton Fiber, J. Appl. Sci. Environ. Mgt. 9(2) (2005) 29 – 35.
[19] C. Kaewprasit, E. Hequet, N. Abidi, J. P. Gourlot, Application of Methylene Blue Adsorption to Cotton Fiber Specific Surface Area Measurement: Part I. Methodology, J. Cott. Sci. 2 (1998) 164-173.
[20] S. Okada, H. Nakahara, H. Isaka, Adsorption of drugs on microcrystalline cellulose suspended in aqueous solutions, Chem. Pharm. Bull. 35 (1987) 761-768.
[21] P. W. Atkins, Physical chemistry, (5th Edition) Oxford university press, Oxford. (1994) pp.986-993.
[22] M. E. Aulton, Pharmaceutics The science of dosage form design, Churchill Livingstone. London. (58-61) (2000) 616-628.
[23] M. Bagane, S. Guiza, Removal of a dye from textile effluents by adsorption, Ann. Chim. Sci. Mater. 25 (2000) 615-626.
[24] G. Rytwo, S. Nir, M. Crespin, L. Margulies, Adsorption and Interactions of Methyl Green with Montmorillonite and Sepiolite, J. Col. Inter. Sci. 222 (2000) 12-19.
[25] C. H. Giles, T. H. MacEwan, S. N. Nakhva, D. Smith, Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids, J. Chem. Soc. 56 (1960).