Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

IJPPE > Volume 2 > Ameliorative Potential of Minocycline and/or...
< Back to Volume

Ameliorative Potential of Minocycline and/or Lactulose on Experimentally Induced Colitis

Full Text PDF

Abstract:

The aim of this study was to compare between the effect of minocycline or lactulose alone and in combination on experimentally-induced colitis in rats. Materials and methods: Seventy albino rats were divided into 7 equal groups: Control untreated group, trinitrobenzenesulphonic acid (TNBS) group, TNBS + lactulose group, lactulose group, TNBS + minocycline group, minocycline group and TNBS + lactulose+ minocycline group. A part of the colon was homogenized for determination of tissue tumor necrosis factor alpha, malondialdehyde, nitric oxide, reduced glutathione and myeloperoxidase. The other part of the colon was examined histopathologically. Also, disease activity index was measured. Results: Administration of each of lactulose or minocycline alone and in combination to TNBS-treated rats induced significant increase in tissue reduced glutathione with significant decrease in disease activity index, tissue tumor necrosis factor alpha, malondialdehyde, nitric oxide and myeloperoxidase and alleviated the histopathological changes compared to the group that received TNBS alone. Minocycline/lactulose combination produced significant improvement in the biochemical and histopathological parameters compared to the groups that received either minocycline or lactulose alone. Conclusion: Lactulose and minocycline had protective effects on TNBS-induced colitis in rats but minocycline/lactulose combination had the upper hand.

Info:

Periodical:
International Journal of Pharmacology, Phytochemistry and Ethnomedicine (Volume 2)
Pages:
42-54
DOI:
10.18052/www.scipress.com/IJPPE.2.42
Citation:
A. M. Kabel "Ameliorative Potential of Minocycline and/or Lactulose on Experimentally Induced Colitis", International Journal of Pharmacology, Phytochemistry and Ethnomedicine, Vol. 2, pp. 42-54, 2016
Online since:
May 2016
Authors:
Export:
Distribution:
References:

[1] Y. Liu, X.Y. Wang, X. Yang, S. Jing, L. Zhu, S.H. Gao, Lung and intestine: a specific link in an ulcerative colitis rat model, Gastroenterol. Res. Pract. 2013 (2013) 124530.

DOI: 10.1155/2013/124530

[2] K.H. Morsy, A.F. Hasanain, Hepatobiliary disorders among naïve patients with ulcerative colitis in Upper Egypt, Arab. J. Gastroenterol. 13 (2012) 71-76.

DOI: 10.1016/j.ajg.2012.06.005

[3] M. Sarra, F. Pallone, T.T. Macdonald, G. Monteleone, IL-23/IL-17 axis in IBD. Inflamm Bowel Dis (2010) 1808–1813.

DOI: 10.1002/ibd.21248

[4] J. Yao, J.Y. Wang, L. Liu, Y.X. Li, A.Y. Xun, W.S. Zeng, C.H. Jia, X.X. Wei, J.L. Feng, L. Zhao, L.S. Wang, Anti-oxidant effects of resveratrol on mice with DSS-induced ulcerative colitis, Arch. Med. Res. 41 (2010) 288-294.

DOI: 10.1016/j.arcmed.2010.05.002

[5] B. Karakoyun, U. Uslu, F. Ercan, M.S. Aydin, M. Yuksel, A.V. Ogunc, I. Alican, The effect of phosphodiesterase-5 inhibition by sildenafil citrate on inflammation and apoptosis in rat experimental colitis, Life Sciences 89 (2011) 402–407.

DOI: 10.1016/j.lfs.2011.07.005

[6] R.C. Langan, P.B. Gotsch, M.A. Krafczyk, D.D. Skillinge, Ulcerative colitis: diagnosis and treatment, American family physician 76 (2007) 1323–1330.

[7] S.J. Gardiner, E.J. Begg, Pharmacogenetics, Drug-Metabolizing Enzymes, and Clinical Practice, Pharmacological Reviews 58 (2006) 521-590.

DOI: 10.1124/pr.58.3.6

[8] B. Medhi, A. Prakash, P.K. Avti, U.N. Saikia, P. Pandhi, K.L. Khanduja, Effect of Manuka honey and sulfasalazine in combination to promote antioxidant defense system in experimentally induced ulcerative colitis model in rats, Indian J. Exp. Biol. 46 (2008).

DOI: 10.1002/ptr.2523

[9] G. Rumi, R. Tsubouchi, M. Okayama, S. Kato, G. Mózsik, K. Takeuchi, Protective effect of lactulose on dextran sulfate sodium-induced colonic inflammation in rats, Digestive Diseases and Sciences 49 (2004) 1466-1472.

DOI: 10.1023/b:ddas.0000042248.48819.ad

[10] X. Chen, Q. Zuo, Y. Hai, X.J. Sun, Lactulose: an indirect antioxidant ameliorating inflammatory bowel disease by increasing hydrogen production, Med. Hypotheses 76 (2011) 325-327.

DOI: 10.1016/j.mehy.2010.09.026

[11] B.M. Buchholz, D.J. Kaczorowski, R. Sugimoto, R. Yang, Y. Wang, T.R. Billiar, K.R. McCurry, A.J. Bauer, A. Nakao, Hydrogen inhalation ameliorates oxidative stress in transplantation induced intestinal graft injury, Am. J. Transplant. 8 (2008).

DOI: 10.1111/j.1600-6143.2008.02359.x

[12] M. Kajiya, M.J. Silva, K. Sato, K. Ouhara, T. Kawai, Hydrogen mediates suppression of colon inflammation induced by dextran sodium sulfate, Biochem. Biophys. Res. Commun. 386 (2009) 11–15.

DOI: 10.1016/j.bbrc.2009.05.117

[13] N. Garrido-Mesa, D. Camuesco, B. Arribas, M. Comalada, E. Bailón, M. Cueto-Sola, P. Utrilla, A. Nieto, A. Zarzuelo, M.E. Rodríguez-Cabezas, J. Gálvez, The intestinal anti-inflammatory effect of minocycline in experimental colitis involves both its immunomodulatory and antimicrobial properties, Pharmacol. Res. 63 (2011).

DOI: 10.1016/j.phrs.2010.12.011

[14] T.Y. Huang, H.C. Chu, Y.L. Lin, C.K. Lin, T.Y. Hsieh, W.K. Chang, Y.C. Chao, C.L. Liao, Minocycline attenuates experimental colitis in mice by blocking expression of inducible nitric oxide synthase and matrix metalloproteinases, Toxicol. Appl. Pharmacol. 237 (2009).

DOI: 10.1016/j.taap.2009.02.026

[15] R.L. Kraus, R. Pasieczny, K. Lariosa-Willingham, M.S. Turner, A. Jiang, J.W. Trauger, Antioxidant properties of minocycline: neuroprotection in an oxidative stress assay and direct radical-scavenging activity. J Neurochem 94 (2005) 819-827.

DOI: 10.1111/j.1471-4159.2005.03219.x

[16] L. Zheng, Z.Q. Gao, S.X. Wang, A chronic ulcerative colitis model in rats, World J. Gastroenterol. 6 (2000) 150-152.

[17] H.S. Cooper, S.N. Murthy, R.S. Shah, D.J. Sedergran, Clinicopathologic study of dextran sulfate sodium experimental murine colitis, Lab Invest 1993; 69: 238-249.

[18] I. Hirata, S. Yasumoto, K. Toshina, T. Inoue, T. Nishikawa, N. Murano, M. Murano, F.Y. Wang, K. Katsu, Evaluation of the effect of pyrrolidine dithiocarbamate in suppressing inflammation in mice with dextran sodium sulfate-induced colitis, World J. Gastroenterol. 13 (2007).

DOI: 10.3748/wjg.v13.i11.1666

[19] G. Aykaç, M. Uysal, A.S. Yalçin, N. Koçak-Toker, A. Sivas, H. Öz, The effect of chronic ethanol ingestion on hepatic lipid peroxide, glutathione, glutathione peroxidase and glutathione transferase in rats, Toxicol. 36 (1985) 71–76.

DOI: 10.1016/0300-483x(85)90008-3

[20] A.F. Casini, M. Ferrali, A. Pompella, E. Maellaro, M. Comporti, Lipid peroxidation and cellular damage in extrahepatic tissues of bromobenzene-intoxicated mice, Am. J. Pathol. 123 (1986) 520–531.

DOI: 10.1016/0006-2952(87)90021-9

[21] P.P. Bradley, D.A. Priebat, R.D. Christensen, G. Rothstein, Measurement of Cutaneous Inflammation: Estimation of Neutrophil Content with an Enzyme Marker, J. Invest. Dermatol. 78 (1982) 206–209.

DOI: 10.1111/1523-1747.ep12506462

[22] N. Cortas, N.W. Wakid, Determination of inorganic nitrate in serum and urine by a kinetic cadmium-reduction method, Clin. Chem. 36 (1990) 1440-1443.

[23] Lowry OH, Rosebrough, NJ, Farr AL , Randall RJ. Protein measurement with Folin phenol reagent. J Biol Chem 1951; 193: 265–275.

[24] Yue-Meng W, You-Qing Z, Bing X , Jun L. Treating TNBS-Induced colitis in rats with probiotics. Turk J Gastroenterol 2011; 22: 486-493.

DOI: 10.4318/tjg.2011.0247

[25] S. Ulisse, P. Gionchetti, S. D'Alo, F.P. Russo, I. Pesce, G. Ricci, F. Rizzello, U. Helwig, M.G. Cifone, M. Campieri, C. De Simone, Expression of cytokines, inducible nitric oxide synthetase and matrix metalloproteinases in pouchitis: effects of probiotic treatment, Am. J. Gastroenterol. 96 (2001).

DOI: 10.1111/j.1572-0241.2001.04139.x

[26] A.N. Sapadin, R. Fleischmajer, Tetracyclines: nonantibiotic properties and their clinical implications, J. Am. Acad. Dermatol. 54 (2006) 258-265.

DOI: 10.1016/j.jaad.2005.10.004

[27] L. Peran, S. Sierra, M. Comalada, F. Lara-Villoslada, E. Bailon, A. Nieto, A. Concha, M. Olivares, A. Zarzuelo, J. Xaus, J. Gálvez, A comparative study of the preventative effects exerted by two probiotics Lactobacillus reuteri and Lactobacillus fermentum, in the trinitrobenzenesulfonic acid model of rat colitis, Br. J. Nutr. 97 (2007).

DOI: 10.1017/s0007114507257770

[28] N. Borruel, M. Carol, F. Casellas, M. Antolín, F. de Lara, E. Espín, J. Naval, Guarner F., Malagelada JR. Increased mucosal tumour necrosis factor alpha production in Crohn's disease can be downregulated ex vivo by probiotic bacteria. Gut 2002; 51: 659–664.

DOI: 10.1136/gut.51.5.659

[29] L. Su, L. Shen, D.R. Clayburgh, S.C. Nalle, E.A. Sullivan, J.B. Meddings, C. Abraham, J.R. Turner, Targeted epithelial tight junction dysfunction causes immune activation and contributes to development of experimental colitis, Gastroenterol. 136 (2009).

DOI: 10.1053/j.gastro.2008.10.081

[30] G. Szeto, A. Brice, H. Yang, S. Barber, R. Siliciano, J. Clements, Minocycline attenuates HIV infection and reactivation by suppressing cellular activation in human CD4+ T cells, The Journal of infectious diseases 201 (2010) 1132–1140.

DOI: 10.1086/651277

[31] K.P. Pavlick, F.S. Laroux, J. Fuseler, R.E. Wolf, L. Gray, J. Hoffman, M.B. Grisham, Role of reactive metabolites of oxygen and nitrogen in inflammatory bowel disease, Free Radic. Biol. Med. 33 (2002) 311–322.

DOI: 10.1016/s0891-5849(02)00853-5
Show More Hide