Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

IJPPE > IJPPE Volume 16 > Development of Novel Protective Polyvalent...
< Back to Volume

Development of Novel Protective Polyvalent Irradiated Pseudomonas aeruginosa Vaccine for Immuno-Compromised Patients

Full Text PDF

Abstract:

Pseudomonas aeruginosa is an opportunistic pathogen affecting immuno-compromised patients; however, no effective vaccine is currently available in the market. Here, we developed novel polyvalent irradiated P. aeruginosa vaccine using cobalt 60 that inhibited pathogen viability but retained antigenic expression functionally. Mice were vaccinated by the developed vaccine by intranasal, intramuscular and subcutaneous route of administration followed by challenge test. The protective efficacy of the novel vaccine reached up to 95%. This significant protection was mainly associated with measurable antiserum opsonic killing activity. In conclusion, the novel vaccine provides a promising strategy of both prophylactic and therapeutic approaches for immuno-compromised patients against MDR P. aeruginosa.

Info:

Periodical:
International Journal of Pharmacology, Phytochemistry and Ethnomedicine (Volume 16)
Pages:
1-10
Citation:
M. M.E. Ahmed et al., "Development of Novel Protective Polyvalent Irradiated Pseudomonas aeruginosa Vaccine for Immuno-Compromised Patients", International Journal of Pharmacology, Phytochemistry and Ethnomedicine, Vol. 16, pp. 1-10, 2021
Online since:
February 2021
Export:
Distribution:
References:

[1] P. H. Gilligan, Infections in patients with cystic fibrosis: diagnostic microbiology update, Clinics in Laboratory Medicine. 34(2) (2014) 197–217.

DOI: https://doi.org/10.1016/j.cll.2014.02.001

[2] N. Safdar, C. Dezfulian, H. R. Collard, S. Saint, Clinical and economic consequences of ventilator-associated pneumonia: a systematic review, Critical Care Medicine. 33(10) (2005) 2184–2193.

DOI: https://doi.org/10.1097/01.ccm.0000181731.53912.d9

[3] B. K. Chan, M. Sistrom, J. E. Wertz, K. E. Kortright, D. Narayan, P. E. Turner, Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa, Scientific Reports. 6 (2016) 26717.

DOI: https://doi.org/10.1038/srep26717

[4] A. Brooun, S. Liu, K. Lewis, A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 44 (3) (2000) 640–646.‏.

DOI: https://doi.org/10.1128/aac.44.3.640-646.2000

[5] M.W. Douglas, K. Mulholland, V. Denyer, T. Gottlieb, Multi-drug resistant Pseudomonas aeruginosa outbreak in a burns unit—an infection control study, Burns: Journal of the International Society for Burn Injuries. 27( 2) (2001) 131–135.

DOI: https://doi.org/10.1016/s0305-4179(00)00084-x

[6] M. Mudau, R. Jacobson, N. Minenza, L. Kuonza, V. Morris, H. Engelbrecht , M. P. Nicol, C. Bamford, Outbreak of multidrug resistant Pseudomonas aeruginosa bloodstream infection in the haematology unit of a South African academic hospital, PLoS One. 8(3) (2013) e55985.

DOI: https://doi.org/10.1371/journal.pone.0055985

[7] G. B. Pier, Promises and pitfalls of Pseudomonas aeruginosa lipopolysaccharide as a vaccine antigen, Carbohydrate Research. 338(23) (2003) 2549–2556.

DOI: https://doi.org/10.1016/s0008-6215(03)00312-4

[8] E.T. Weimer, H. Lu, N.D. Kock, D.J. Wozniak, S. B. Mizel, A fusion protein vaccine containing Opr F epitope 8, OprI, and type A and B flagellins promotes enhanced clearance of nonmucoid Pseudomonas aeruginosa, Infection and Immunity. 77 (6) (2009) 2356–2366.

DOI: https://doi.org/10.1128/iai.00054-09

[9] T. Sawa, T. L. Yahr, M. Ohara, K. Kurahashi, M. A. Gropper, J. P. Wiener-Kronish ,  D. W. Frank , Active and passive immunization with the Pseudomonas V antigen protects against type III intoxication and lung injury, Nature Medicine. 5 (4) (1999) 392–398.

DOI: https://doi.org/10.1038/7391

[10] S. L. Gellatly, R. E. Hancock, Pseudomonas aeruginosa: new insights into pathogenesis and host defenses, Pathog Dis. 67 (2013) 159 –173.

DOI: https://doi.org/10.1111/2049-632x.12033

[11] Polyvalent vaccine at Dorlands Medical Dictionary Archived March 7, 2012, at the Wayback Machine.

[12] H. S. Seo, Application of radiation technology in vaccines development, Clin. Exp. Vaccine Res. (2015).

[13] R. Hugh and G. L. Gilardi, 1980. Pseudomonas, P. 288 – 317. In E. H. Lennette, A. Balows, W. J. Hauler, Jr., and J. P. Truant (Ed.), Manual of clinical Microbiology, 3rd ed. American Society for Microbiology, Washington, D. C.

[14] T. Bergan, 1975, Epidemiological typing of Pseudomonas aeruginosa, P. 189-235. In M. R. BBrown (ed.) Resistance of Pseudomonas aeruginosa. John Wiley & Sons, Inc., New York.

[15] N.J. Legakis, M. Aliferopoulou, J. Papavassiliou, and M. Papapetropoulou, Serotypes of Pseudomonas aeruginosa in clinical specimens in relation to antibiotic susceptibility. J. Clin. Microbiol. (1982),16(3): 458–463.

DOI: https://doi.org/10.1128/jcm.16.3.458-463.1982

[16] N. Mayer-Hamblett, M. Rosenfeld, R. L. Gibson, B. W. Ramsey, H. D. Kulasekara, G. Z. Retsch-Bogart, W. Morgan, D. J. Wolter, C. E. Pope, L. S. Houston, B. R. Kulasekara, U. Khan, J. L. Burns, S. I. Miller, L. R. Hoffman, Pseudomonas aeruginosa in vitro phenotypes distinguish cysticfibrosis infection stages and outcomes, Am J Respir Crit Care Med. 190(2014) 289-297.‏.

DOI: https://doi.org/10.1164/rccm.201404-0681oc

[17] T.F. Murphy, A.L. Brauer, K. Eschberger, P. Lobbins, L. Grove, X. Cai, S.  Sethi, Pseudomonas aeruginosa in chronic obstructive pulmonary disease, Am J Respir Crit Care Med. 177 (2008) 853–860.

DOI: https://doi.org/10.1164/rccm.200709-1413oc

[18] G. P. Priebe, J. B. Goldberg, Vaccines for Pseudomonas aeruginosa: a long and winding road, Expert Rev Vaccines. 13 (2014) 507–519.

DOI: https://doi.org/10.1586/14760584.2014.890053

[19] J. Smith J, M. Lipsitch, J. W. Almond, Vaccine production, distribution, access and uptake. Lancet. 378(2011) 428–38.

DOI: https://doi.org/10.1016/s0140-6736(11)60478-9

[20] Plotkin SA. History of vaccine development. New York: Springer; (2011).

[21] R. Gasparini, D. Amicizia, P. L. Lai, D. Panatto, Live attenuated influenza vaccine: a review. J Prev Med Hyg. 52 (2011)95–101.

[22] C. Arama, M. Troye-Blomberg, The path of malaria vaccine development: challenges and perspectives. J Intern Med. 227 (2014) 456–466.

DOI: https://doi.org/10.1111/joim.12223

[23] D. T. Le, A. Wang-Gillam, V. Picozzi, et al., Safety and survival with GVAX pancreas prime and Listeria Monocytogenes-expressing mesothelin (CRS-207) boost vaccines for metastatic pancreatic cancer. J Clin Oncol. 33 (2015) 1325–1333.

DOI: https://doi.org/10.1200/jco.2014.57.4244

[24] R. J. Napier, E. J. Adams, M. C. Gold, D. M. Lewinsohn, The Role of Mucosal Associated Invariant T Cells in Antimicrobial Immunity, Front Immunol. 6 (2015) 344. ‏.

DOI: https://doi.org/10.3389/fimmu.2015.00344

[25] B. Tummler, L. Wiehlmann, J. Klockgether, N. Cramer, Advances in understanding Pseudomonas, F1000Prime Rep. 6 (2014) 9.

DOI: https://doi.org/10.12703/p6-9

[26] N. Mesaros, P. Nordmann, P. Plésiat, M. Roussel-Delvallez , J. Van Eldere , Y. Glupczynski, Y. Van Laethem, F. Jacobs, P. Lebecque, A. Malfroot, P. M. Tulkens, F. Van Bambeke, Pseudomonas aeruginosa: resistance and therapeutic options at the turn of the new millennium, Clin Microbiol Infect. 13 (2007) 560 –578.

DOI: https://doi.org/10.1111/j.1469-0691.2007.01681.x

[27] M.L. Dunkley, R.L. Clancy, A.W. Cripps, A role for CD4 + T cells from orally immunized rats in enhanced clearance of Pseudomonas aeruginosa from the lung, Immunology. 83 (1994) 362 – 369. ‏.

[28] M.L. Dunkley, A.W. Cripps, P.W. Reinbott, R.L. Clancy, Immunity to respiratory Pseudomonas aeruginosa infection: the role of‏ gut-derived T helper cells and immune serum, Adv Exp Med Biol. 371B (1995) 771– 775.

[29] M. M. Stevenson, T. K. Kondratieva, A. S. Apt, M. F. Tam, E. Skamene, In vitro and in vivo T cell responses in mice during‏ bronchopulmonary infection with mucoid Pseudomonas aeruginosa, Clin Exp Immunol. 99 (1995) 98–105.

DOI: https://doi.org/10.1111/j.1365-2249.1995.tb03478.x
Show More Hide
Cited By:
This article has no citations.