Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

IJPPE > Volume 14 > Ethnopharmacological Documentation of Medicinal...
< Back to Volume

Ethnopharmacological Documentation of Medicinal Plants Used in the Traditional Treatment of Hypertension in Tarfaya Province, Morocco

Full Text PDF

Abstract:

The use of plants to treat chronic diseases is part of an ancient Moroccan tradition. This study will present the first relevant documentation on medicinal plants used in the treatment of hypertension in Tarfaya province. This study aimed to collect and document information on medicinal plants traditionally used by the local population of Tarfaya province for the treatment of hypertension. Ethnobotanical surveys were conducted using 150 questionnaires in the study area. Documented data were evaluated using the quantitative ethno-botanical indices of frequency citation (FC) and Relative Frequency of Citation (RFC). The results obtained allowed to inventory 52 species of medicinal plants belonging to 29 families traditionally used against hypertension. The species were rich in diverse chemical constituents. The most cited families are Lamiaceae (9 species), Apiaceae (5 species), Compositae (3 species), Leguminosae (3 species) and Myrtaceae (3 species). Ten plants are reported for the first time as used in the treatment of hypertension. The most cited plant species are Allium sativum (RFC = 0.28), Allium cepa (RFC = 0.2), Olea europaea (RFC = 0.18), Searsia tripartita (RFC = 0.16), Ammodaucus leucotrichus (RFC = 0.15) and Myrtus communis (RFC = 0.15). Leaves were the most used organs. The decoction was the dominant method of preparation. This study showed that the inhabitants of Tarfaya use a wide variety of plants for the treatment of hypertension. This work is a source of information that can serve as a basis for phytochemists and pharmacologists interested in research on plants with antihypertensive effect.

Info:

Periodical:
International Journal of Pharmacology, Phytochemistry and Ethnomedicine (Volume 14)
Pages:
16-39
Citation:
E. Idm'hand et al., "Ethnopharmacological Documentation of Medicinal Plants Used in the Traditional Treatment of Hypertension in Tarfaya Province, Morocco", International Journal of Pharmacology, Phytochemistry and Ethnomedicine, Vol. 14, pp. 16-39, 2019
Online since:
November 2019
Export:
Distribution:
References:

[1] WHO, Cardiovascular diseases (CVDs) [fact sheet]. Available: http://www.who.int/mediacentre/factsheets/fs317/en/.

[2] M. Diallo, et al., Prevalence, management and ethnobotanical investigation of hypertension in two Guinean urban districts, Journal of ethnopharmacology. 231 (2019) 73-79.

DOI: https://doi.org/10.1016/j.jep.2018.07.028

[3] H. De Wet, et al., The use of indigenous medicine for the treatment of hypertension by a rural community in northern Maputaland, South Africa, South African Journal of Botany. 103 (2016) 78-88.

DOI: https://doi.org/10.1016/j.sajb.2015.08.011

[4] A. Douira, L. Zidane, Étude ethnobotanique des plantes médicinales utilisées dans le traitement du diabète, et des maladies cardiaques dans la région d'Izarène (Nord du Maroc), Journal of Applied Biosciences. 86(1) (2015) 7940–7956.

DOI: https://doi.org/10.4314/jab.v86i1.3

[5] A. Mohammadi, et al., Seasonal variation in the chemical composition, antioxidant activity, and total phenolic content of Artemisia absinthium essential oils, Pharmacognosy research. 7(4) (2015) 329.

DOI: https://doi.org/10.4103/0974-8490.158441

[6] D. Davids, et al., Ethnobotanical survey of medicinal plants used to manage high blood pressure and type 2 diabetes mellitus in Bitterfontein, Western Cape Province, South Africa, Journal of ethnopharmacology. 194 (2016) 755-766.

DOI: https://doi.org/10.1016/j.jep.2016.10.063

[7] B. Ayinde, et al., Hypotensive effects of 3, 4-dihydroxybenzyaldehyde isolated from the stem bark of Musanga cecropioides, Journal of Pharmacognosy and Phytotherapy. 2(1) (2010) 004-009.

[8] J. Ngene, et al., Importance dans la pharmacopée traditionnelle des plantes à flavonoïdes vendues dans les marchés de Douala est (Cameroun), Journal of Applied Biosciences. 88(1) (2015) 8194–8210.

DOI: https://doi.org/10.4314/jab.v88i1.6

[9] M. Eddouks, et al., Ethnopharmacological survey of medicinal plants used for the treatment of diabetes mellitus, hypertension and cardiac diseases in the south-east region of Morocco (Tafilalet), Journal of ethnopharmacology. 82(2-3) (2002) 97-103.

DOI: https://doi.org/10.1016/s0378-8741(02)00164-2

[10] H. Jouad, et al., Ethnobotanical survey of medicinal plants used for the treatment of diabetes, cardiac and renal diseases in the North centre region of Morocco (Fez–Boulemane), Journal of Ethnopharmacology. 77(2-3) (2001) 175-182.

DOI: https://doi.org/10.1016/s0378-8741(01)00289-6

[11] A. Tahraoui, et al., Ethnopharmacological survey of plants used in the traditional treatment of hypertension and diabetes in south-eastern Morocco (Errachidia province), Journal of ethnopharmacology. 110(1) (2007) 105-117.

DOI: https://doi.org/10.1016/j.jep.2006.09.011

[12] A. Ziyyat, et al., Phytotherapy of hypertension and diabetes in oriental Morocco, Journal of ethnopharmacology. 58(1) (1997) 45-54.

[13] Z. Aziz, A. Lotfi, Ethnobotanical Survey of Medicinal and Aromatic Plants Used by the People of Targuist in the North of Morocco, Der Pharma Chemica. 10(5) (2018).

[14] F. Jamila, E. Mostafa, Ethnobotanical survey of medicinal plants used by people in Oriental Morocco to manage various ailments, Journal of ethnopharmacology. 154(1) (2014) 76-87.

DOI: https://doi.org/10.1016/j.jep.2014.03.016

[15] C. Anyinam, Ecology and ethnomedicine: exploring links between current environmental crisis and indigenous medical practices, Social Science & Medicine. 40(3) (1995) 321-329.

DOI: https://doi.org/10.1016/0277-9536(94)e0098-d

[16] S. Djidel, et al., Medicinal plants used traditionally in the Algerian folk medicine for gastrointestinal disorders and hypertension: total polyphenols, flavonoids and antioxidant activity, XIII International Conference on Medicinal and Aromatic Plants 854, 2009, pp.59-65.

DOI: https://doi.org/10.17660/actahortic.2010.854.6

[17] A. Gbolade, Ethnobotanical study of plants used in treating hypertension in Edo State of Nigeria, Journal of ethnopharmacology. 144(1) (2012) 1-10.

DOI: https://doi.org/10.1016/j.jep.2012.07.018

[18] N. Ahmed, et al., Ethnomedicinal knowledge and relative importance of indigenous medicinal plants of Cholistan desert, Punjab Province, Pakistan, Journal of ethnopharmacology. 155(2) (2014) 1263-1275.

DOI: https://doi.org/10.1016/j.jep.2014.07.007

[19] K. Al-Qattan, et al., The antihypertensive effect of garlic (Allium sativum) in the rat two-kidney–one-clip Goldblatt model, Journal of ethnopharmacology. 66(2) (1999) 217-222.

DOI: https://doi.org/10.1016/s0378-8741(98)00173-1

[20] C. Pantoja, et al., Diuretic, natriuretic and hypotensive effects produced by Allium sativum (garlic) in anaesthetized dogs, Journal of ethnopharmacology. 31(3) (1991) 325-331.

DOI: https://doi.org/10.1016/0378-8741(91)90018-9

[21] Q. Jabeen, et al., Coriander fruit exhibits gut modulatory, blood pressure lowering and diuretic activities, Journal of ethnopharmacology. 122(1) (2009) 123-130.

DOI: https://doi.org/10.1016/j.jep.2008.12.016

[22] M. Maghrani, et al., Antihypertensive effect of Lepidium sativum L. in spontaneously hypertensive rats, Journal of ethnopharmacology. 100(1-2) (2005) 193-197.

DOI: https://doi.org/10.1016/j.jep.2005.02.024

[23] A. Villar, et al., Hypotensive effect of Pistacia lentiscus L, International Journal of Crude Drug Research. 25(1) (1987) 1-3.

[24] E. Susalit, et al., Olive (Olea europaea) leaf extract effective in patients with stage-1 hypertension: comparison with Captopril, Phytomedicine. 18(4) (2011) 251-258.

DOI: https://doi.org/10.1016/j.phymed.2010.08.016

[25] S. Ullah, et al., Ethnomedicinal plant use value in the Lakki Marwat District of Pakistan, Journal of ethnopharmacology. 158 (2014) 412-422.

DOI: https://doi.org/10.1016/j.jep.2014.09.048

[26] Y. Sylla, et al., Etude ethnobotanique des plantes utilisées contre le paludisme par les tradithérapeutes et herboristes dans le district d'Abidjan (Côte d'Ivoire), International Journal of Biological and Chemical Sciences. 12(3) (2018) 1380-1400.

DOI: https://doi.org/10.4314/ijbcs.v12i3.25

[27] L. Lopez-Torrez, et al., Acacia senegal vs. Acacia seyal gums–Part 1: Composition and structure of hyperbranched plant exudates, Food Hydrocolloids. 51 (2015) 41-53.

DOI: https://doi.org/10.1016/j.foodhyd.2015.04.019

[28] R. Babiker, et al., Effect of Gum Arabic (Acacia Senegal) supplementation on visceral adiposity index (VAI) and blood pressure in patients with type 2 diabetes mellitus as indicators of cardiovascular disease (CVD): a randomized and placebo-controlled clinical trial, Lipids in health and disease. 17(1) (2018) 56.

DOI: https://doi.org/10.1186/s12944-018-0711-y

[29] H. Ram, et al., Antiatherosclerotic and cardioprotective potential of acacia senegal seeds in diet-induced atherosclerosis in rabbits, Biochemistry research international. 2014 (2014).

DOI: https://doi.org/10.1155/2014/436848

[30] M.A. Osman, Chemical and nutrient analysis of baobab (Adansonia digitata) fruit and seed protein solubility, Plant foods for human nutrition. 59(1) (2004) 29-33.

DOI: https://doi.org/10.1007/s11130-004-0034-1

[31] B.V. Owoyele, A.O. Bakare, Analgesic properties of aqueous bark extract of Adansonia digitata in Wistar rats, Biomedicine & Pharmacotherapy. 97 (2018) 209-212.

DOI: https://doi.org/10.1016/j.biopha.2017.10.079

[32] E.A. Irondi, et al., Blanching influences the phenolics composition, antioxidant activity, and inhibitory effect of Adansonia digitata leaves extract on α-amylase, α-glucosidase, and aldose reductase, Food science & nutrition. 5(2) (2017) 233-242.

DOI: https://doi.org/10.1002/fsn3.386

[33] A. Hanafy, et al., Evaluation of hepatoprotective activity of Adansonia digitata extract on acetaminophen-induced hepatotoxicity in rats, Evidence-Based complementary and Alternative medicine. 2016 (2016).

DOI: https://doi.org/10.1155/2016/4579149

[34] O. Chouitah, et al., Essential Oil from the Leaves of Ajuga iva: Chemical Composition and Antimicrobial Activity, Journal of Essential Oil Bearing Plants. 20(3) (2017) 873-877.

DOI: https://doi.org/10.1080/0972060x.2017.1337526

[35] S. Medjeldi, et al., Biological activities, and phytocompounds of northwest Algeria Ajuga iva (L) extracts: Partial identification of the antibacterial fraction, Microbial pathogenesis. 121 (2018) 173-178.

DOI: https://doi.org/10.1016/j.micpath.2018.05.022

[36] J. El Hilaly, B. Lyoussi, Hypoglycaemic effect of the lyophilised aqueous extract of Ajuga iva in normal and streptozotocin diabetic rats, Journal of Ethnopharmacology. 80(2-3) (2002) 109-113.

DOI: https://doi.org/10.1016/s0378-8741(01)00407-x

[37] M. Marrelli, et al., Biological Properties and Bioactive Components of Allium cepa L.: Focus on Potential Benefits in the Treatment of Obesity and Related Comorbidities, Molecules. 24(1) (2019) 119.

DOI: https://doi.org/10.3390/molecules24010119

[38] M. Mollavali, et al., Nitrogen form and mycorrhizal inoculation amount and timing affect flavonol biosynthesis in onion (Allium cepa L.), Mycorrhiza. 28(1) (2018) 59-70.

DOI: https://doi.org/10.1007/s00572-017-0799-3

[39] M.S.H. Akash, et al., Spice plant Allium cepa: Dietary supplement for treatment of type 2 diabetes mellitus, Nutrition. 30(10) (2014) 1128-1137.

DOI: https://doi.org/10.1016/j.nut.2014.02.011

[40] P. Satyal, et al., The chemical compositions of the volatile oils of garlic (Allium sativum) and wild garlic (Allium vineale), Foods. 6(8) (2017) 63.

DOI: https://doi.org/10.3390/foods6080063

[41] N. Martins, et al., Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre-and post-harvest conditions: A review, Food chemistry. 211 (2016) 41-50.

DOI: https://doi.org/10.1016/j.foodchem.2016.05.029

[42] S.S. Nair, et al., Allium sativum constituents exhibit anti-tubercular activity in vitro and in RAW 264.7 mouse macrophage cells infected with Mycobacterium tuberculosis H37Rv, Pharmacognosy magazine. 13(Suppl 2) (2017) S209.

DOI: https://doi.org/10.4103/pm.pm_435_16

[43] A. Yetgin, et al., Comparison of Antimicrobial Activity of Allium sativum Cloves from China and Taşköprü, Turkey, Advances in pharmacological sciences. 2018 (2018).

DOI: https://doi.org/10.1155/2018/9302840

[44] M.A. Oukerrou, et al., Chemical composition and cytotoxic and antibacterial activities of the essential oil of Aloysia citriodora palau grown in Morocco, Advances in pharmacological sciences. 2017 (2017).

DOI: https://doi.org/10.1155/2017/7801924

[45] A. Gil, et al., Identification of the genotype from the content and composition of the essential oil of lemon verbena (Aloysia citriodora Palau), Journal of agricultural and food chemistry. 55(21) (2007) 8664-8669.

DOI: https://doi.org/10.1021/jf0708387

[46] R. Bahramsoltani, et al., Aloysia citrodora Paláu (Lemon verbena): A review of phytochemistry and pharmacology, Journal of ethnopharmacology. (2018).

DOI: https://doi.org/10.1016/j.jep.2018.04.021

[47] S.M.B. Hashemi, et al., Extraction of essential oil from Aloysia citriodora Palau leaves using continuous and pulsed ultrasound: kinetics, antioxidant activity and antimicrobial properties, Process Biochemistry. 65 (2018) 197-204.

DOI: https://doi.org/10.1016/j.procbio.2017.10.020

[48] M. Touaibia, et al., Chemical Composition and Antimicrobial Activity of the Saharo-endemic Species: Ammodaucus leucotrichus subsp. leucotrichus Coss & Dur (Apiaceae), Phytothérapie. (2018).

DOI: https://doi.org/10.3166/phyto-2018-0079

[49] D. Dahmane, et al., Chemical composition, antioxidant and antibacterial activities of the essential oils of medicinal plant Ammodaucus leucotrichus from Algeria, Journal of EssEntial oil rEsEarch. 29(1) (2017) 48-55.

DOI: https://doi.org/10.1080/10412905.2016.1201015

[50] F. El-Ouady, M. Eddouks, Glucose lowering activity of aqueous Ammodaucus leucotrichus extract in diabetic rats, Cardiovascular & hematological disorders drug targets. (2019).

DOI: https://doi.org/10.2174/1871529x19666190222182312

[51] I.A. El-Haci, et al., Antimicrobial activity of Ammodaucus leucotrichus fruit oil from Algerian Sahara, Natural product communications. 9(5) (2014) 711-712.

DOI: https://doi.org/10.1177/1934578x1400900533

[52] B.E. Ziani, et al., Detailed chemical composition and functional properties of Ammodaucus leucotrichus Cross. & Dur. and Moringa oleifera Lamarck, Journal of Functional Foods. 53 (2019) 237-247.

DOI: https://doi.org/10.1016/j.jff.2018.12.023

[53] M. Govindarajan, G. Benelli, Artemisia absinthium-borne compounds as novel larvicides: effectiveness against six mosquito vectors and acute toxicity on non-target aquatic organisms, Parasitology research. 115(12) (2016) 4649-4661.

DOI: https://doi.org/10.1007/s00436-016-5257-1

[54] R. Dilshad, et al., Phytochemical screening and antibacterial potential of Artemisia absinthium L., Swertia chirayita and Sphaeranthus indicus, Pakistan journal of pharmaceutical sciences. 31(2) (2018).

[55] K. Tariq, et al., Anthelmintic activity of extracts of Artemisia absinthium against ovine nematodes, Veterinary parasitology. 160(1-2) (2009) 83-88.

DOI: https://doi.org/10.1016/j.vetpar.2008.10.084

[56] I. Koyuncu, Evaluation of anticancer, antioxidant activity and phenolic compounds of Artemisia absinthium L. Extract, Cellular and molecular biology (Noisy-le-Grand, France). 64(3) (2018) 25-34.

DOI: https://doi.org/10.14715/cmb/2018.64.3.5

[57] F. Younsi, et al., Essential Oil Variability in Natural Populations of Artemisia campestris (L.) and Artemisia herba-alba (Asso) and Incidence on Antiacetylcholinesterase and Antioxidant Activities, Chemistry & biodiversity. 14(7) (2017) e1700017.

DOI: https://doi.org/10.1002/cbdv.201700017

[58] M. Abu-Darwish, et al., Artemisia herba-alba essential oil from Buseirah (South Jordan): Chemical characterization and assessment of safe antifungal and anti-inflammatory doses, Journal of ethnopharmacology. 174 (2015) 153-160.

DOI: https://doi.org/10.1016/j.jep.2015.08.005

[59] R. Rafiq, et al., Antibacterial and Antioxidant Activities of Essential Oils from Artemisia herba-alba Asso., Pelargonium capitatum× radens and Laurus nobilis L, Foods. 5(2) (2016) 28.

DOI: https://doi.org/10.3390/foods5020028

[60] D. Khlifi, et al., Composition and anti-oxidant, anti-cancer and anti-inflammatory activities of Artemisia herba-alba, Ruta chalpensis L. and Peganum harmala L, Food and chemical toxicology. 55 (2013) 202-208.

DOI: https://doi.org/10.1016/j.fct.2013.01.004

[61] M. Clauser, et al., Phytochemical investigation on Atriplex halimus L. from Sardinia, Natural product research. 27(20) (2013) 1940-1944.

[62] N. Benhammou, et al., Antioxidant activity of methanolic extracts and some bioactive compounds of Atriplex halimus, Comptes Rendus Chimie. 12(12) (2009) 1259-1266.

DOI: https://doi.org/10.1016/j.crci.2009.02.004

[63] I. Chikhi, et al., Antidiabetic activity of aqueous leaf extract of Atriplex halimus L.(Chenopodiaceae) in streptozotocin–induced diabetic rats, Asian Pacific journal of tropical disease. 4(3) (2014) 181-184.

DOI: https://doi.org/10.1016/s2222-1808(14)60501-6

[64] H. Zhang, Z. Ma, Phytochemical and pharmacological properties of Capparis spinosa as a medicinal plant, Nutrients. 10(2) (2018) 116.

DOI: https://doi.org/10.3390/nu10020116

[65] N. Tlili, et al., Phenolic profile and antioxidant activity of Capparis spinosa seeds harvested from different wild habitats, Industrial Crops and Products. 76 (2015) 930-935.

DOI: https://doi.org/10.1016/j.indcrop.2015.07.040

[66] J. Jiménez-López, et al., Phytochemical profile and antioxidant activity of caper berries (Capparis spinosa L.): Evaluation of the influence of the fermentation process, Food chemistry. 250 (2018) 54-59.

DOI: https://doi.org/10.1016/j.foodchem.2018.01.010

[67] Z. Ghafari, et al., Antimicrobial activity and essential oil composition of Cuminum cyminum L. and Carum carvi L. seeds from Iran, Intl. J. Biosci. 6 (2014) 153-159.

DOI: https://doi.org/10.12692/ijb/4.6.153-159

[68] M. Razzaghi-Abyaneh, et al., Chemical composition and antiaflatoxigenic activity of Carum carvi L., Thymus vulgaris and Citrus aurantifolia essential oils, Food Control. 20(11) (2009) 1018-1024.

DOI: https://doi.org/10.1016/j.foodcont.2008.12.007

[69] S. Lahlou, et al., Diuretic activity of the aqueous extracts of Carum carvi and Tanacetum vulgare in normal rats, Journal of Ethnopharmacology. 110(3) (2007) 458-463.

DOI: https://doi.org/10.1016/j.jep.2006.10.005

[70] P. Kumar, D. Singh, Molluscicidal activity of Ferula asafoetida, Syzygium aromaticum and Carum carvi and their active components against the snail Lymnaea acuminata, Chemosphere. 63(9) (2006) 1568-1574.

DOI: https://doi.org/10.1016/j.chemosphere.2005.08.071

[71] N. Thippeswamy, et al., Antioxidant and antibacterial properties of phenolic extract from Carum carvi L, journal of pharmacy research. 7(4) (2013) 352-357.

DOI: https://doi.org/10.1016/j.jopr.2013.03.028

[72] A.I. Hussain, et al., Citrullus colocynthis (L.) Schrad (bitter apple fruit): A review of its phytochemistry, pharmacology, traditional uses and nutritional potential, Journal of ethnopharmacology. 155(1) (2014) 54-66.

DOI: https://doi.org/10.1016/j.jep.2014.06.011

[73] B. Marzouk, et al., Antibacterial and antifungal activities of several populations of Tunisian Citrullus colocynthis Schrad. immature fruits and seeds, Journal de Mycologie Médicale. 20(3) (2010) 179-184.

DOI: https://doi.org/10.1016/j.mycmed.2010.05.006

[74] F. Hussain, et al., Identification of Hypotensive Biofunctional Compounds of Coriandrum sativum and Evaluation of Their Angiotensin-Converting Enzyme (ACE) Inhibition Potential, Oxidative medicine and cellular longevity. 2018 (2018).

DOI: https://doi.org/10.1155/2018/4643736

[75] J. Matasyoh, et al., Chemical composition and antimicrobial activity of the essential oil of Coriandrum sativum, Food Chemistry. 113(2) (2009) 526-529.

DOI: https://doi.org/10.1016/j.foodchem.2008.07.097

[76] A. Begnami, et al., Antimicrobial potential of Coriandrum sativum L. against different Candida species in vitro, Food Chemistry. 118(1) (2010) 74-77.

DOI: https://doi.org/10.1016/j.foodchem.2009.04.089

[77] N.B. Guerra, et al., Antioxidant compounds from coriander (Coriandrum sativum L.) etheric extract, Journal of Food Composition and Analysis. 18(2-3) (2005) 193-199.

DOI: https://doi.org/10.1016/j.jfca.2003.12.006

[78] B. Laribi, et al., Coriander (Coriandrum sativum L.) and its bioactive constituents, Fitoterapia. 103 (2015) 9-26.

DOI: https://doi.org/10.1016/j.fitote.2015.03.012

[79] D. Karthik, S. Ravikumar, Proteome and phytochemical analysis of Cynodon dactylon leaves extract and its biological activity in diabetic rats, Biomedicine & Preventive Nutrition. 1(1) (2011) 49-56.

DOI: https://doi.org/10.1016/j.bionut.2010.09.001

[80] D. Khlifi, et al., LC–MS analysis, anticancer, antioxidant and antimalarial activities of Cynodon dactylon L. extracts, Industrial crops and products. 45 (2013) 240-247.

DOI: https://doi.org/10.1016/j.indcrop.2012.12.030

[81] A.A. Mozafari, et al., Phytochemical composition and in vitro antioxidant potential of Cynodon dactylon leaf and rhizome extracts as affected by drying methods and temperatures, Journal of food science and technology. 55 (2018) 2220-2229.

DOI: https://doi.org/10.1007/s13197-018-3139-5

[82] M.H. Soares, et al., Chemical composition, antibacterial, schistosomicidal, and cytotoxic activities of the essential oil of Dysphania ambrosioides (L.) Mosyakin & Clemants (Chenopodiaceae), Chemistry & biodiversity. 14(8) (2017) e1700149.

DOI: https://doi.org/10.1002/cbdv.201700149

[83] S.-Q. Hou, et al., Polyol monoterpenes isolated from Chenopodium ambrosioides, Natural product research. 31(21) (2017) 2467-2472.

DOI: https://doi.org/10.1080/14786419.2017.1314278

[84] T. Zohra, et al., Extraction optimization, total phenolic, flavonoid contents, HPLC-DAD analysis and diverse pharmacological evaluations of Dysphania ambrosioides (L.) Mosyakin & Clemants, Natural product research. (2018) 1-7.

DOI: https://doi.org/10.1080/14786419.2018.1437428

[85] R. Kumar, et al., Evaluation of Chenopodium ambrosioides oil as a potential source of antifungal, antiaflatoxigenic and antioxidant activity, International journal of food microbiology. 115(2) (2007) 159-164.

DOI: https://doi.org/10.1016/j.ijfoodmicro.2006.10.017

[86] G.R. Vilela, et al., Activity of essential oil and its major compound, 1, 8-cineole, from Eucalyptus globulus Labill., against the storage fungi Aspergillus flavus Link and Aspergillus parasiticus Speare, Journal of Stored Products Research. 45(2) (2009) 108-111.

DOI: https://doi.org/10.1016/j.jspr.2008.10.006

[87] L. Harkat-Madouri, et al., Chemical composition, antibacterial and antioxidant activities of essential oil of Eucalyptus globulus from Algeria, Industrial Crops and Products. 78 (2015) 148-153.

DOI: https://doi.org/10.1016/j.indcrop.2015.10.015

[88] L. Boulekbache-Makhlouf, et al., Total phenolic content, antioxidant and antibacterial activities of fruits of Eucalyptus globulus cultivated in Algeria, Industrial crops and products. 41 (2013) 85-89.

DOI: https://doi.org/10.1016/j.indcrop.2012.04.019

[89] C. Schmid, et al., Saponins from European licorice roots (Glycyrrhiza glabra), Journal of natural products. 81(8) (2018) 1734-1744.

DOI: https://doi.org/10.1021/acs.jnatprod.8b00022

[90] A. Karkanis, et al., Phytochemical composition, health effects, and crop management of liquorice (Glycyrrhiza glabra L.): Α medicinal plant, Food Reviews International. 34(2) (2018) 182-203.

DOI: https://doi.org/10.1080/87559129.2016.1261300

[91] V.K. Gupta, et al., Antimicrobial potential of Glycyrrhiza glabra roots, Journal of Ethnopharmacology. 116(2) (2008) 377-380.

[92] G. Pastorino, et al., Liquorice (Glycyrrhiza glabra): A phytochemical and pharmacological review, Phytotherapy Research. 32(12) (2018) 2323-2339.

DOI: https://doi.org/10.1002/ptr.6178

[93] S. Kozachok, et al., γ-Pyrone compounds: flavonoids and maltol glucoside derivatives from Herniaria glabra L. collected in the Ternopil region of the Ukraine, Phytochemistry. 152 (2018) 213-222.

DOI: https://doi.org/10.1016/j.phytochem.2018.05.009

[94] H. Rhiouani, et al., Effects of saponins from Herniaria glabra on blood pressure and renal function in spontaneously hypertensive rats, Therapie. 54(6) (1999) 735-739.

[95] H. Rhiouani, et al., Antihypertensive effect of Herniaria glabra saponins in the spontaneously hypertensive rat, Annales pharmaceutiques francaises, 2001, pp.211-214.

[96] O. Horner, et al., Antiscalant properties of Herniaria glabra aqueous solution, Desalination. 409 (2017) 157-162.

DOI: https://doi.org/10.1016/j.desal.2017.01.028

[97] A. Piovesana, et al., Composition analysis of carotenoids and phenolic compounds and antioxidant activity from hibiscus calyces (Hibiscus sabdariffa L.) by HPLC-DAD-MS/MS, Phytochemical Analysis. 30(2) (2019) 208-217.

DOI: https://doi.org/10.1002/pca.2806

[98] G. Riaz, R. Chopra, A review on phytochemistry and therapeutic uses of Hibiscus sabdariffa L, Biomedicine & Pharmacotherapy. 102 (2018) 575-586.

DOI: https://doi.org/10.1016/j.biopha.2018.03.023

[99] J. Zhen, et al., Phytochemistry, antioxidant capacity, total phenolic content and anti-inflammatory activity of Hibiscus sabdariffa leaves, Food chemistry. 190 (2016) 673-680.

[100] I. Borrás-Linares, et al., Characterization of phenolic compounds, anthocyanidin, antioxidant and antimicrobial activity of 25 varieties of Mexican Roselle (Hibiscus sabdariffa), Industrial Crops and Products. 69 (2015) 385-394.

DOI: https://doi.org/10.1016/j.indcrop.2015.02.053

[101] H. Fidan, et al., Chemical Composition and Antimicrobial Activityof Laurus nobilis L. Essential Oils from Bulgaria, Molecules. 24(4) (2019) 804.

DOI: https://doi.org/10.3390/molecules24040804

[102] W. Dhifi, et al., Phytochemical composition and antioxidant activity of Tunisian Laurus nobilis, Pakistan journal of pharmaceutical sciences. 31(6) (2018) 2397-2402.

[103] L. Caputo, et al., Laurus nobilis: Composition of essential oil and its biological activities, Molecules. 22(6) (2017) 930.

DOI: https://doi.org/10.3390/molecules22060930

[104] A. Merghni, et al., Antibacterial and antibiofilm activities of Laurus nobilis L. essential oil against Staphylococcus aureus strains associated with oral infections, Current Research In Translational Medicine. 64(1) (2016) 29-34.

DOI: https://doi.org/10.1016/j.patbio.2015.10.003

[105] B. Touati, et al., Chemical composition of the leaf and flower essential oils of Tunisian Lavandula dentata L.(Lamiaceae), Chemistry & Biodiversity. 8(8) (2011) 1560-1569.

DOI: https://doi.org/10.1002/cbdv.201000357

[106] D. Dris, et al., Lavandula dentata essential oils: chemical composition and larvicidal activity against Culiseta longiareolata and Culex pipiens (Diptera: Culicidae), African entomology. 25(2) (2017) 387-395.

DOI: https://doi.org/10.4001/003.025.0387

[107] F. Algieri, et al., Anti-inflammatory activity of hydroalcoholic extracts of Lavandula dentata L. and Lavandula stoechas L, Journal of ethnopharmacology. 190 (2016) 142-158.

[108] R.B. Semwal, et al., Lawsonia inermis L.(henna): Ethnobotanical, phytochemical and pharmacological aspects, Journal of Ethnopharmacology. 155(1) (2014) 80-103.

DOI: https://doi.org/10.1016/j.jep.2014.05.042

[109] A. Pasandi Pour, H. Farahbakhsh, Lawsonia inermis L. leaves aqueous extract as a natural antioxidant and antibacterial product, Natural product research. (2019) 1-5.

DOI: https://doi.org/10.1080/14786419.2019.1569006

[110] M. Sakran, et al., A new isoflavonoid from seeds of Lepidium sativum L. and its protective effect on hepatotoxicity induced by paracetamol in male rats, Molecules. 19(10) (2014) 15440-15451.

DOI: https://doi.org/10.3390/molecules191015440

[111] Q.-L. Fan, et al., Two new acylated flavonol glycosides from the seeds of Lepidium sativum, Molecules. 19(8) (2014) 11341-11349.

DOI: https://doi.org/10.3390/molecules190811341

[112] M. Eddouks, et al., Study of the hypoglycaemic activity of Lepidium sativum L. aqueous extract in normal and diabetic rats, Journal of Ethnopharmacology. 97(2) (2005) 391-395.

DOI: https://doi.org/10.1016/j.jep.2004.11.030

[113] M.H. Mehmood, et al., Prokinetic and laxative activities of Lepidium sativum seed extract with species and tissue selective gut stimulatory actions, Journal of Ethnopharmacology. 134(3) (2011) 878-883.

DOI: https://doi.org/10.1016/j.jep.2011.01.047

[114] H. Wang, et al., Comparison of phytochemical profiles and health benefits in fiber and oil flaxseeds (Linum usitatissimum L.), Food chemistry. 214 (2017) 227-233.

DOI: https://doi.org/10.1016/j.foodchem.2016.07.075

[115] R. Ansari, et al., A review on Pharmacological and clinical aspects of Linum usitatissimum L, Current drug discovery technologies. (2018).

[116] A. Bouyahya, et al., Chemical composition of Mentha pulegium and Rosmarinus officinalis essential oils and their antileishmanial, antibacterial and antioxidant activities, Microbial pathogenesis. 111 (2017) 41-49.

DOI: https://doi.org/10.1016/j.micpath.2017.08.015

[117] O. Politeo, et al., Phytochemical Composition, Antioxidant Potential and Cholinesterase Inhibition Potential of Extracts from Mentha pulegium L, Chemistry & biodiversity. 15(12) (2018) e1800374.

DOI: https://doi.org/10.1002/cbdv.201800624

[118] B. Teixeira, et al., European pennyroyal (Mentha pulegium) from Portugal: Chemical composition of essential oil and antioxidant and antimicrobial properties of extracts and essential oil, Industrial Crops and Products. 36(1) (2012) 81-87.

DOI: https://doi.org/10.1016/j.indcrop.2011.08.011

[119] F. Brahmi, et al., Chemical composition and in vitro antimicrobial, insecticidal and antioxidant activities of the essential oils of Mentha pulegium L. and Mentha rotundifolia (L.) Huds growing in Algeria, Industrial Crops and Products. 88 (2016) 96-105.

DOI: https://doi.org/10.1016/j.indcrop.2016.03.002

[120] R. Scherer, et al., Antioxidant and antibacterial activities and composition of Brazilian spearmint (Mentha spicata L.), Industrial crops and products. 50 (2013) 408-413.

DOI: https://doi.org/10.1016/j.indcrop.2013.07.007

[121] A. Chrysargyris, et al., Antioxidant and antibacterial activities, mineral and essential oil composition of spearmint (Mentha spicata L.) affected by the potassium levels, Industrial Crops and Products. 103 (2017) 202-212.

DOI: https://doi.org/10.1016/j.indcrop.2017.04.010

[122] S.K. Bardaweel, et al., Chemical composition, antioxidant, antimicrobial and Antiproliferative activities of essential oil of Mentha spicata L.(Lamiaceae) from Algerian Saharan atlas, BMC complementary and alternative medicine. 18(1) (2018) 201.

DOI: https://doi.org/10.1186/s12906-018-2274-x

[123] P. Arumugam, et al., Anti-inflammatory activity of four solvent fractions of ethanol extract of Mentha spicata L. investigated on acute and chronic inflammation induced rats, Environmental toxicology and pharmacology. 26(1) (2008) 92-95.

DOI: https://doi.org/10.1016/j.etap.2008.02.008

[124] Y. Harassi, et al., Phytochemical analysis, cytotoxic and antioxidant activities of Myrtus communis essential oil from Morocco, Journal of Complementary and Integrative Medicine. (2019).

DOI: https://doi.org/10.1515/jcim-2018-0100

[125] M. Usai, et al., Chemical Composition of Myrtle (Myrtus communis L.) Berries Essential Oils as Observed in a Collection of Genotypes, Molecules. 23(10) (2018) 2502.

DOI: https://doi.org/10.3390/molecules23102502

[126] M. Sisay, T. Gashaw, Ethnobotanical, ethnopharmacological, and phytochemical studies of Myrtus communis Linn: A popular herb in Unani system of medicine, Journal of evidence-based complementary & alternative medicine. 22(4) (2017) 1035-1043.

DOI: https://doi.org/10.1177/2156587217718958

[127] B.S. Siddiqui, et al., Flavonoid and cardenolide glycosides and a pentacyclic triterpene from the leaves of Nerium oleander and evaluation of cytotoxicity, Phytochemistry. 77 (2012) 238-244.

DOI: https://doi.org/10.1016/j.phytochem.2012.01.001

[128] K.G. Singhal, G.D. Gupta, Hepatoprotective and antioxidant activity of methanolic extract of flowers of Nerium oleander against CCl4–induced liver injury in rats, Asian Pacific journal of tropical medicine. 5(9) (2012) 677-685.

DOI: https://doi.org/10.1016/s1995-7645(12)60106-0

[129] P. Dey, et al., Assessment of anti-diabetic activity of an ethnopharmacological plant Nerium oleander through alloxan induced diabetes in mice, Journal of ethnopharmacology. 161 (2015) 128-137.

DOI: https://doi.org/10.1016/j.jep.2014.12.012

[130] S. Cheikh-Rouhou, et al., Nigella sativa L.: Chemical composition and physicochemical characteristics of lipid fraction, Food chemistry. 101(2) (2007) 673-681.

DOI: https://doi.org/10.1016/j.foodchem.2006.02.022

[131] L.F. D'Antuono, et al., Seed yield, yield components, oil content and essential oil content and composition of Nigella sativa L. and Nigella damascena L, Industrial crops and products. 15(1) (2002) 59-69.

DOI: https://doi.org/10.1016/s0926-6690(01)00096-6

[132] L. Bordoni, et al., Antioxidant and Anti-Inflammatory Properties of Nigella sativa Oil in Human Pre-Adipocytes, Antioxidants. 8(2) (2019) 51.

DOI: https://doi.org/10.3390/antiox8020051

[133] M. Al-Ghamdi, The anti-inflammatory, analgesic and antipyretic activity of Nigella sativa, Journal of ethnopharmacology. 76(1) (2001) 45-48.

DOI: https://doi.org/10.1016/s0378-8741(01)00216-1

[134] W. Kooti, et al., Phytochemistry, pharmacology, and therapeutic uses of black seed (Nigella sativa), Chinese journal of natural medicines. 14(10) (2016) 732-745.

DOI: https://doi.org/10.1016/s1875-5364(16)30088-7

[135] G. Yaldiz, et al., Biological value and chemical components of essential oils of sweet basil (Ocimum basilicum L.) grown with organic fertilization sources, Journal of the Science of Food and Agriculture. (2018).

DOI: https://doi.org/10.1002/jsfa.9468

[136] A.I. Hussain, et al., Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations, Food chemistry. 108(3) (2008) 986-995.

DOI: https://doi.org/10.1016/j.foodchem.2007.12.010

[137] O. Politeo, et al., Chemical composition and antioxidant capacity of free volatile aglycones from basil (Ocimum basilicum L.) compared with its essential oil, Food Chemistry. 101(1) (2007) 379-385.

DOI: https://doi.org/10.1016/j.foodchem.2006.01.045

[138] N.H.A. El-Soud, et al., Chemical composition and antifungal activity of Ocimum basilicum L. essential oil, Open access Macedonian journal of medical sciences. 3(3) (2015) 374.

DOI: https://doi.org/10.3889/oamjms.2015.082

[139] J. Hayes, et al., Phenolic composition and in vitro antioxidant capacity of four commercial phytochemical products: Olive leaf extract (Olea europaea L.), lutein, sesamol and ellagic acid, Food Chemistry. 126(3) (2011) 948-955.

DOI: https://doi.org/10.1016/j.foodchem.2010.11.092

[140] A.F. Vinha, et al., Phenolic profiles of Portuguese olive fruits (Olea europaea L.): Influences of cultivar and geographical origin, Food chemistry. 89(4) (2005) 561-568.

DOI: https://doi.org/10.1016/j.foodchem.2004.03.012

[141] C.G. Guex, et al., ANTIDIABETIC EFFECTS OF Olea europaea L. LEAVES IN DIABETIC RATS INDUCED BY HIGH-FAT DIET AND LOW-DOSE STREPTOZOTOCIN, Journal of ethnopharmacology. (2019).

[142] O.-H. Lee, B.-Y. Lee, Antioxidant and antimicrobial activities of individual and combined phenolics in Olea europaea leaf extract, Bioresource technology. 101(10) (2010) 3751-3754.

DOI: https://doi.org/10.1016/j.biortech.2009.12.052

[143] A. Bouyahya, et al., Correlation between phenological changes, chemical composition and biological activities of the essential oil from Moroccan endemic Oregano (Origanum compactum Benth), Industrial Crops and Products. 108 (2017) 729-737.

DOI: https://doi.org/10.1016/j.indcrop.2017.07.033

[144] A. Bouyahya, et al., Origanum compactum Benth: a review on phytochemistry and pharmacological properties, Med Aromat Plants. 5(04) (2016).

DOI: https://doi.org/10.4172/2167-0412.1000252

[145] A. Bouyahya, et al., Anti-dermatophytes Activity of Origanum compactum Essential Oil at Three Developmental Stages, Phytothérapie. (2018).

DOI: https://doi.org/10.3166/phyto-2018-0063

[146] R. Vera, J. Chane-Ming, Chemical composition of the essential oil of marjoram (Origanum majorana L.) from Reunion Island, Food Chemistry. 66(2) (1999) 143-145.

DOI: https://doi.org/10.1016/s0308-8146(98)00018-1

[147] I.H. Sellami, et al., Effect of growth stage on the content and composition of the essential oil and phenolic fraction of sweet marjoram (Origanum majorana L.), Industrial Crops and Products. 30(3) (2009) 395-402.

DOI: https://doi.org/10.1016/j.indcrop.2009.07.010

[148] S.-S. Chun, et al., Phenolic antioxidants from clonal oregano (Origanum vulgare) with antimicrobial activity against Helicobacter pylori, Process Biochemistry. 40(2) (2005) 809-816.

DOI: https://doi.org/10.1016/j.procbio.2004.02.018

[149] B. Tripathy, et al., Phytochemical screening and antifungal activity of ethanol and petroleum-ether leaf extracts of Origanum majorana, International Journal of Pharmaceutical Research and Health Sciences. 4(4) (2016) 1320-1323.

DOI: https://doi.org/10.21276/ijprhs.2016.04.14

[150] B. Oksal, et al., Antibacterial activity of essential oil obtained from Origanum majorana L. by solvent-free microwave extraction, Planta Medica. 78(11) (2012) PJ85.

DOI: https://doi.org/10.1055/s-0032-1321245

[151] T.A. Moussa, O.A. Almaghrabi, Fatty acid constituents of Peganum harmala plant using Gas Chromatography–Mass Spectroscopy, Saudi journal of biological sciences. 23(3) (2016) 397-403.

DOI: https://doi.org/10.1016/j.sjbs.2015.04.013

[152] G. Nenaah, Antibacterial and antifungal activities of (beta)-carboline alkaloids of Peganum harmala (L) seeds and their combination effects, Fitoterapia. 81(7) (2010) 779-782.

DOI: https://doi.org/10.1016/j.fitote.2010.04.004

[153] M. Snoussi, et al., Chemical composition and antibiofilm activity of Petroselinum crispum and Ocimum basilicum essential oils against Vibrio spp. strains, Microbial pathogenesis. 90 (2016) 13-21.

DOI: https://doi.org/10.1016/j.micpath.2015.11.004

[154] D.L. Luthria, Influence of experimental conditions on the extraction of phenolic compounds from parsley (Petroselinum crispum) flakes using a pressurized liquid extractor, Food Chemistry. 107(2) (2008) 745-752.

DOI: https://doi.org/10.1016/j.foodchem.2007.08.074

[155] G. Linde, et al., Antifungal and antibacterial activities of Petroselinum crispum essential oil, Genetics and Molecular Research. 15(3) (2016) 15038538.

DOI: https://doi.org/10.4238/gmr.15038538

[156] H. Zhang, et al., Evaluation of antioxidant activity of parsley (Petroselinum crispum) essential oil and identification of its antioxidant constituents, Food Research International. 39(8) (2006) 833-839.

DOI: https://doi.org/10.1016/j.foodres.2006.03.007

[157] B. Demirci, et al., Phoenix dactylifera L. spathe essential oil: Chemical composition and repellent activity against the yellow fever mosquito, Acta tropica. 128(3) (2013) 557-560.

DOI: https://doi.org/10.1016/j.actatropica.2013.08.003

[158] A. Hamedi, et al., Preliminary pharmacognostic evaluation and volatile constituent analysis of spathe of Phoenix dactylifera L.(Tarooneh), Pharmacognosy Journal. 5(2) (2013) 83-86.

DOI: https://doi.org/10.1016/j.phcgj.2013.02.005

[159] H. El Abed, et al., Antioxidant, Anti-Inflammatory, and Antitumoral Effects of Aqueous Ethanolic Extract from Phoenix dactylifera L. Parthenocarpic Dates, BioMed research international. 2018 (2018).

DOI: https://doi.org/10.1155/2018/1542602

[160] F. Biglari, et al., Antioxidant activity and phenolic content of various date palm (Phoenix dactylifera) fruits from Iran, Food chemistry. 107(4) (2008) 1636-1641.

DOI: https://doi.org/10.1016/j.foodchem.2007.10.033

[161] M. Oves, et al., Antimicrobial and anticancer activities of silver nanoparticles synthesized from the root hair extract of Phoenix dactylifera, Materials Science and Engineering: C. 89 (2018) 429-443.

DOI: https://doi.org/10.1016/j.msec.2018.03.035

[162] A. Shojaii, M. Abdollahi Fard, Review of pharmacological properties and chemical constituents of Pimpinella anisum, ISRN pharmaceutics. 2012 (2012).

DOI: https://doi.org/10.5402/2012/510795

[163] A. Orav, et al., Essential oil composition of Pimpinella anisum L. fruits from various European countries, Natural product research. 22(3) (2008) 227-232.

DOI: https://doi.org/10.1080/14786410701424667

[164] M. Yemmen, et al., Antioxidant activities, anticancer activity and polyphenolics profile, of leaf, fruit and stem extracts of Pistacia lentiscus from Tunisia, Cellular and molecular biology (Noisy-le-Grand, France). 63(9) (2017) 87-95.

DOI: https://doi.org/10.14715/cmb/2017.63.9.16

[165] F. Mezni, et al., Diversity of sterol composition in Tunisian Pistacia lentiscus seed oil, Chemistry & biodiversity. 13(5) (2016) 544-548.

[166] A. Abdelwahed, et al., Study of antimutagenic and antioxidant activities of Gallic acid and 1, 2, 3, 4, 6-pentagalloylglucose from Pistacia lentiscus: Confirmation by microarray expression profiling, Chemico-biological interactions. 165(1) (2007) 1-13.

DOI: https://doi.org/10.1016/j.cbi.2006.10.003

[167] W. Bhouri, et al., Study of genotoxic, antigenotoxic and antioxidant activities of the digallic acid isolated from Pistacia lentiscus fruits, Toxicology in Vitro. 24(2) (2010) 509-515.

DOI: https://doi.org/10.1016/j.tiv.2009.06.024

[168] R.S. Borges, et al., Rosmarinus officinalis essential oil: A review of its phytochemistry, anti-inflammatory activity, and mechanisms of action involved, Journal of ethnopharmacology. (2018).

[169] M. Jardak, et al., Chemical composition, anti-biofilm activity and potential cytotoxic effect on cancer cells of Rosmarinus officinalis L. essential oil from Tunisia, Lipids in health and disease. 16(1) (2017) 190.

DOI: https://doi.org/10.1186/s12944-017-0580-9

[170] G. Nieto, et al., Antioxidant and Antimicrobial Properties of Rosemary (Rosmarinus officinalis, L.): A Review, Medicines. 5(3) (2018) 98.

DOI: https://doi.org/10.3390/medicines5030098

[171] Y. KAWASAKI, et al., The mutagenic constituents of Rubia tinctorum, Chemical and pharmaceutical bulletin. 40(6) (1992) 1504-1509.

DOI: https://doi.org/10.1248/cpb.40.1504

[172] N.T. Manojlovic, et al., Antifungal activity of Rubia tinctorum, Rhamnus frangula and Caloplaca cerina, Fitoterapia. 76(2) (2005) 244-246.

DOI: https://doi.org/10.1016/j.fitote.2004.12.002

[173] F. Kalyoncu, et al., Antimicrobial activity of common madder (Rubia tinctorum L.), Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives. 20(6) (2006) 490-492.

DOI: https://doi.org/10.1002/ptr.1884

[174] M.R.B. Khedher, et al., Chemical composition and biological activities of Salvia officinalis essential oil from Tunisia, EXCLI journal. 16 (2017) 160.

[175] A.B. Cutillas, et al., Salvia officinalis L. essential oils from Spain: determination of composition, antioxidant capacity, antienzymatic, and antimicrobial bioactivities, Chemistry & biodiversity. 14(8) (2017) e1700102.

DOI: https://doi.org/10.1002/cbdv.201700102

[176] E. Alexa, et al., Synergistic Antifungal, Allelopatic and Anti-Proliferative Potential of Salvia officinalis L., and Thymus vulgaris L. Essential Oils, Molecules. 23(1) (2018) 185.

DOI: https://doi.org/10.3390/molecules23010185

[177] U.K. Kolac, et al., The anti-inflammatory and antioxidant effects of Salvia officinalis on lipopolysaccharide-induced inflammation in rats, Journal of medicinal food. 20(12) (2017) 1193-1200.

DOI: https://doi.org/10.1089/jmf.2017.0035

[178] G. Gwari, et al., Volatile constituents of Saussurea costus roots cultivated in Uttarakhand Himalayas, India, Pharmacognosy research. 5(3) (2013) 179.

DOI: https://doi.org/10.4103/0974-8490.112424

[179] T. Julianti, et al., Antitrypanosomal sesquiterpene lactones from Saussurea costus, Fitoterapia. 82(7) (2011) 955-959.

DOI: https://doi.org/10.1016/j.fitote.2011.05.010

[180] M.M. Pandey, et al., Saussurea costus: botanical, chemical and pharmacological review of an ayurvedic medicinal plant, Journal of Ethnopharmacology. 110(3) (2007) 379-390.

DOI: https://doi.org/10.1016/j.jep.2006.12.033

[181] B.-K. Lee, et al., Anti-allergic effects of sesquiterpene lactones from Saussurea costus (Falc.) Lipsch. determined using in vivo and in vitro experiments, Journal of ethnopharmacology. 213 (2018) 256-261.

DOI: https://doi.org/10.1016/j.jep.2017.11.018

[182] R.K. Saini, et al., Ripening improves the content of carotenoid, α-tocopherol, and polyunsaturated fatty acids in tomato (Solanum lycopersicum L.) fruits, 3 Biotech. 7(1) (2017) 43.

DOI: https://doi.org/10.1007/s13205-017-0666-0

[183] H. Li, et al., Bioaccessibility, in vitro antioxidant activities and in vivo anti-inflammatory activities of a purple tomato (Solanum lycopersicum L.), Food chemistry. 159 (2014) 353-360.

DOI: https://doi.org/10.1016/j.foodchem.2014.03.023

[184] A. Riahi, C. Hdider, Bioactive compounds and antioxidant activity of organically grown tomato (Solanum lycopersicum L.) cultivars as affected by fertilization, Scientia Horticulturae. 151 (2013) 90-96.

DOI: https://doi.org/10.1016/j.scienta.2012.12.009

[185] H. Barakat, Composition, antioxidant, antibacterial activities and mode of action of clove (Syzygium aromaticum L.) buds essential oil, British Journal of Applied Science & Technology. 4(13) (2014) (1934).

DOI: https://doi.org/10.9734/bjast/2014/8902

[186] G. Razafimamonjison, et al., Bud, leaf and stem essential oil composition of Syzygium aromaticum from Madagascar, Indonesia and Zanzibar, International Journal of Basic and Applied Sciences. 3(3) (2014) 224.

DOI: https://doi.org/10.14419/ijbas.v3i3.2473

[187] M.F.R. Hassanien, Composition and Antiradical Power of Syzygium aromaticum Lipids, Chemistry of Natural Compounds. 50(4) (2014) 716-718.

DOI: https://doi.org/10.1007/s10600-014-1060-3

[188] M. El Jemli, et al., Chemical composition, acute toxicity, antioxidant and anti-inflammatory activities of Moroccan Tetraclinis articulata L, Journal of traditional and complementary medicine. 7(3) (2017) 281-287.

DOI: https://doi.org/10.1016/j.jtcme.2016.06.006

[189] A. Djouahri, et al., Essential Oil Variability and Biological Activities of Tetraclinis articulata (Vahl) Mast. Wood According to the Extraction Time, Chemistry & biodiversity. 13(12) (2016) 1691-1706.

DOI: https://doi.org/10.1002/cbdv.201600124

[190] M. Riasat, et al., The constituents of essential oil in leaves of Karaj accession of Trigonella foenum graecum, Natural product research. 31(14) (2017) 1709-1712.

DOI: https://doi.org/10.1080/14786419.2017.1286484

[191] L.-B. Gu, et al., Extraction of fenugreek (Trigonella foenum-graceum L.) seed oil using subcritical butane: Characterization and process optimization, Molecules. 22(2) (2017) 228.

DOI: https://doi.org/10.3390/molecules22020228

[192] B. Al-Dabbagh, et al., Antioxidant and anticancer activities of Trigonella foenum-graecum, Cassia acutifolia and Rhazya stricta, BMC complementary and alternative medicine. 18(1) (2018) 240.

DOI: https://doi.org/10.1186/s12906-018-2285-7

[193] G. Sindhu, et al., Evaluation of anti-arthritic potential of Trigonella foenum graecum L.(Fenugreek) mucilage against rheumatoid arthritis, Prostaglandins & other lipid mediators. 138 (2018) 48-53.

DOI: https://doi.org/10.1016/j.prostaglandins.2018.08.002

[194] S.R. Pradeep, K. Srinivasan, Haemato-protective influence of dietary fenugreek (Trigonella foenum-graecum L.) seeds is potentiated by onion (Allium cepa L.) in streptozotocin-induced diabetic rats, Biomedicine & Pharmacotherapy. 98 (2018) 372-381.

DOI: https://doi.org/10.1016/j.biopha.2017.12.037

[195] M. Francišković, et al., Chemical Composition and Immuno-Modulatory Effects of Urtica dioica L.(Stinging Nettle) Extracts, Phytotherapy research. 31(8) (2017) 1183-1191.

DOI: https://doi.org/10.1002/ptr.5836

[196] S. Gül, et al., Chemical composition and in vitro cytotoxic, genotoxic effects of essential oil from Urtica dioica L, Bulletin of environmental contamination and toxicology. 88(5) (2012) 666-671.

DOI: https://doi.org/10.1007/s00128-012-0535-9

[197] M. El Haouari, J.A. Rosado, Phytochemical, Anti-Diabetic And Cardiovascular Properties Of Urtica dioica L.(Urticaceae): A Review, Mini reviews in medicinal chemistry. 19(1) (2019) 63-71.

DOI: https://doi.org/10.2174/1389557518666180924121528

[198] M.H. Abu Zarga, et al., Chemical composition, antimicrobial and antitumor activities of essential oil of Ammodaucus leucotrichus growing in Algeria, Journal of Biologically Active Products from Nature. 3(3) (2013) 224-231.

DOI: https://doi.org/10.1080/22311866.2013.833469

[199] Y.-J. Jung, et al., Lignan and flavonoids from the stems of Zea mays and their anti-inflammatory and neuroprotective activities, Archives of pharmacal research. 38(2) (2015) 178-185.

DOI: https://doi.org/10.1007/s12272-014-0387-4

[200] R. Suzuki, et al., Two Flavone C-Glycosides from the Style of Zea m ays with Glycation Inhibitory Activity, Journal of natural products. 66(4) (2003) 564-565.

DOI: https://doi.org/10.1021/np020256d

[201] M. Carro-Juárez, et al., Aphrodisiac Activity of the Aqueous Crude Extract of Purple Corn (Zea mays) in Male Rats, Journal of Evidence-Based Complementary & Alternative Medicine. 22(4) (2017) 637-645.

DOI: https://doi.org/10.1177/2156587217708521

[202] J.E. Okokon, et al., Antimalarial and antiplasmodial activity of husk extract and fractions of Zea mays, Pharmaceutical biology. 55(1) (2017) 1394-1400.

DOI: https://doi.org/10.1080/13880209.2017.1302966

[203] H. Ghazghazi, et al., Fatty acids composition of Tunisian Ziziphus lotus L.(Desf.) fruits and variation in biological activities between leaf and fruit extracts, Natural product research. 28(14) (2014) 1106-1110.

DOI: https://doi.org/10.1080/14786419.2014.913244

[204] M. Chouaibi, et al., Nutritional composition of Zizyphus lotus L. seeds, Journal of the Science of Food and Agriculture. 92(6) (2012) 1171-1177.

DOI: https://doi.org/10.1002/jsfa.4659

[205] C. Benammar, et al., Zizyphus lotus L.(Desf.) modulates antioxidant activity and human T-cell proliferation, BMC complementary and alternative medicine. 10(1) (2010) 54.

DOI: https://doi.org/10.1186/1472-6882-10-54

[206] M. Adnan, et al., Ethnomedicine use in the war affected region of northwest Pakistan, Journal of Ethnobiology and Ethnomedicine. 10(1) (2014) 16.

DOI: https://doi.org/10.1186/1746-4269-10-16

[207] M. Barkaoui, et al., Ethnobotanical survey of medicinal plants used in the traditional treatment of diabetes in Chtouka Ait Baha and Tiznit (Western Anti-Atlas), Morocco, Journal of ethnopharmacology. 198 (2017) 338-350.

DOI: https://doi.org/10.1016/j.jep.2017.01.023

[208] I. Teixidor-Toneu, et al., An ethnomedicinal survey of a Tashelhit-speaking community in the High Atlas, Morocco, Journal of ethnopharmacology. 188 (2016) 96-110.

DOI: https://doi.org/10.1016/j.jep.2016.05.009

[209] S. Akerreta, et al., First comprehensive contribution to medical ethnobotany of Western Pyrenees, Journal of ethnobiology and ethnomedicine. 3(1) (2007) 26.

DOI: https://doi.org/10.1186/1746-4269-3-26

[210] R. Raterta, et al., Assessment, inventory and ethnobotanical survey of medicinal plants in Batan and Sabtang Island (Batanes Group of Islands, Philippines), International Journal of Pure Applied Bioscience. 2 (2014) 147-154.

[211] T.F. Xavier, et al., Observation on the traditional phytotherapy among the Malayali tribes in Eastern Ghats of Tamil Nadu, South India, Journal of ethnopharmacology. 165 (2015) 198-214.

DOI: https://doi.org/10.1016/j.jep.2015.02.045

[212] A. Bouyahya, et al., Indigenous knowledge of the use of medicinal plants in the North-West of Morocco and their biological activities, European Journal of Integrative Medicine. 13 (2017) 9-25.

DOI: https://doi.org/10.1016/j.eujim.2017.06.004

[213] H. Ouhaddou, et al., An ethnobotanical study of medicinal plants of the Agadir Ida Ou Tanane province (southwest Morocco), Journal of Applied Biosciences. 84(1) (2014) 7707-7722.

DOI: https://doi.org/10.4314/jab.v84i1.5

[214] N. Benlamdini, et al., Étude floristique et ethnobotanique de la flore médicinale du Haut Atlas oriental (Haute Moulouya), Journal of applied biosciences. 78(1) (2014) 6771-6787.

DOI: https://doi.org/10.4314/jab.v78i1.17

[215] M. RHATTAS, et al., Étude ethnobotanique des plantes médicinales dans le Parc National de Talassemtane (Rif occidental du Maroc), Journal of Applied Biosciences. 97 (2016) 9187-9211.

DOI: https://doi.org/10.4314/jab.v97i1.5
Show More Hide
Cited By:
This article has no citations.