Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

IJPPE > Volume 13 > In Vitro and In Silico Antioxidant, Anti-Diabetic,...
< Back to Volume

In Vitro and In Silico Antioxidant, Anti-Diabetic, Anti-HIV and Anti-Alzheimer Activity of Endophytic Fungi, Cladosporium uredinicola Phytochemicals

Full Text PDF

Abstract:

The present work was aimed to identify phytochemicals in C. uredinicola methanol extract from qualitative, TLC and GC-MS method and evaluated for antioxidant, anti-HIV, anti-diabetes, anti-cholinesterase activity in vitro and in silico. The C. uredinicola extract showed flavonoids, tannins, alkaloids, glycosides, phenols, terpenoids, and coumarins presence in qualitative method. From GC-MS analysis, identified seven different phytochemicals and out of seven, four (coumarin, coumarilic acid, hymecromone, alloisoimperatorin) are coumarins. The C. uredinicola extract have shown significant antioxidant activity in DPPH (73) and FRAP (1359) method. The HIV-1 RT (83.81+2.14), gp 120 (80.24+2.31), integrase (79.43+3.14) and protease (77.63+2.14), DPPIV, β-glucosidase and acetyl cholinesterase activity was significantly reduced by the extract. The 2-diphenylmethyleneamino methyl ester had shown significant interaction with oxidant and HIV-1 proteins whereas alloisoimperatorin have interacted with diabetes and cholinesterase proteins followed by hymecromone with high binding energy. These three phytochemicals are non-carcinogens, non-toxic, readily degradable and have drug likeliness properties. The C. uredinicola phytochemicals are responsible for management of diabetes, HIV-1 and Alzheimer. Further in vivo work is needed to justify our research.

Info:

Periodical:
International Journal of Pharmacology, Phytochemistry and Ethnomedicine (Volume 13)
Pages:
13-34
Citation:
M. Govindappa et al., "In Vitro and In Silico Antioxidant, Anti-Diabetic, Anti-HIV and Anti-Alzheimer Activity of Endophytic Fungi, Cladosporium uredinicola Phytochemicals", International Journal of Pharmacology, Phytochemistry and Ethnomedicine, Vol. 13, pp. 13-34, 2019
Online since:
May 2019
Export:
Distribution:
References:

[1] S. Karunanayake et al., Xanthones and triterpenes of Calophyllum tomentosum. Phytochem 20(6) (1981) 1303-1304.

DOI: https://doi.org/10.1016/0031-9422(81)80026-x

[2] B. Elya, N. Puspitasari, F.H. Maharani, Alpha-glucosidase activity from the most active fraction of Calophyllum tomentosum Wight leaves. Asian J Pharm Clin Res 10(5) (2017)72-75.

DOI: https://doi.org/10.22159/ajpcr.2017.v10s5.23101

[3] B. Elya et al., Screening α-glucosidase inhibitory activity from some plants of apocyanaceae, clusiaceae, euphorbiaceae and rubiaceae. J Biomed Biotech 281078 (2012) 6 pages.

DOI: https://doi.org/10.1155/2012/281078

[4] G. Trease, S.M. Evans, Pharmacognosy. 15th ed. London: Bailer Tindal (2002) 23–67.

[5] J.B. Harborne, Phytochemical methods - a guide to modern techniques of plant analysis. 2nd ed. London: Chapman and Hall (1984) 4–16.

[6] T. Umashankar et al., Isolation, purification and in vitro cytotoxicity activities of coumarin isolated from endophytic fungi, Alternaria species of Crotalaria pallida. Indo Amer J Pham Res 5(2) (2015) 926-936.

[7] M. Govindappa et al., In vitro antimitotic, antiproliferative and GC-MS studies of methanol extract of endophytic fungi, Penicillium species of Tabebuia argentea. Revis Farm 65(2) (2017) 301-309.

[8] C.M. Liyana-Pathirana, F. Shahidi, Antioxidant activity of commercial soft and hard wheat (Triticum aestivum L.) as affected by gastric pH conditions. J Agri Food Chem 53 (2005) 2433–2440.

DOI: https://doi.org/10.1021/jf049320i

[9] V. Katalinic et al., Antioxidant effectiveness of selected wines in comparison with (+)-catechin. Food Chem 86 (2004) 593–600.

DOI: https://doi.org/10.1016/j.foodchem.2003.10.007

[10] A. Tomić et al., Antimicrobial and antioxidant properties of methanol extracts of two Athamanta turbith subspecies. Pharm Biol 47(4) (2009) 314–319.

[11] B. Elya et al., Antidiabetic activity and phytochemical screening of extracts from Indonesian plants by inhibition of alpha-amylase, alpha-glucosidase and dipeptidyl peptidase IV. Pakistan J Biol Sci 18 (2015) 279-284.

DOI: https://doi.org/10.3923/pjbs.2015.279.284

[12] A.A. Rege, R.Y. Ambaye, R.A. Deshmukh, In vitro testing of anti-HIV activity of some medicinal plants. Indian J Nat Prod Res 1(2) (2010) 193-199.

[13] C.L. Narayan, R.V. Rai, A screening strategy for selection of anti-HIV integrase and anti-HIV protease inhibitors from plant extracts of Indian medicinal plants. Int J Phytom 3 (2011)312-318.

[14] Y. Yuan et al., Potential of endophytic fungi isolated from cotton roots for biological control against Verticillium wilt disease. PLoS One 12(1) (2017) e0170557.

DOI: https://doi.org/10.1371/journal.pone.0170557

[15] A. Seal et al., Docking study of HIV-1 reverse transcriptase with phytochemicals. Bioinform 5(10) (2011)430–9.

[16] F. Cheng et al., admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inf Model 52(11) (2012) 3099-3105.

DOI: https://doi.org/10.1021/ci300367a

[17] K.G. Byler, Ogungbe IV, Setzer WN, In silico screening for anti-Zika virus phytochemicals. J Mol Graph Model 69 (2016) 78-91.

DOI: https://doi.org/10.1016/j.jmgm.2016.08.011

[18] S. Das et al., Prediction of anti-Alzheimer's activity of flavonoids targeting acetylcholinesterase in silico. Phytoch Anal 28 (2017) 324-331.

[19] A. Thakur et al., Insecticidal potential of an endophytic fungus, Cladosporium uredinicola, against Sporodtera litura. Phytocparas 41(4) (2013) 373-382.

DOI: https://doi.org/10.1007/s12600-013-0298-9

[20] L.S. De Medeiros et al., Antimicrobial depsides produced by Cladosporium uredinicola, an endophytic fungus isolated from Psidium guajava fruits. Helvetica 94(6) (2011)1077-1084.

DOI: https://doi.org/10.1002/hlca.201000387

[21] L.S. Medeiros et al., Evaluation of herbicidal potential of depsides from Cladosporium uredinicola, an endophytic fungus found in Guava fruit. J Braz Chem Soc 23(8) (2012) 1551-1557.

DOI: https://doi.org/10.1590/s0103-50532012005000018

[22] C. Sasikumar, S.J. Mohana, S. Yashodha, Scrutiny of antagonistic microbial and cytotoxic promises of fungal endophyte secluded from Pisonia grandis R. Br. Res J Pharma Tech 10(3) (2017) 647-662.

DOI: https://doi.org/10.5958/0974-360x.2017.00123.8

[23] N.N. Devi, J.J. Prabhakaran, F. Wahab, Phytochemical analysis and enzyme analysis of endophytic fungi from Centella asiatica. Asian Pacific J Trop Biomed (2015) S1280-S1284.

DOI: https://doi.org/10.1016/s2221-1691(12)60400-6

[24] H.X. Liu et al., Two new metabolites from Daldinia eschscholtzii, an endophytic fungi derived from Pogostemon cablin. J Asian Nat Prod Res 24 (2017) 1-7.

[25] B.S. Siddique et al., Isolation and structure determination of a benzofuran and a bis-nor-isoprenoid from Aspergillus niger grown on the water soluble fraction of Morinda citrifolia Linn leaves. Nat Prod Res 17(5) (2013) 355-360.

[26] F. Xu et al., Benzofuran derivatives from the mangrove endophytic fungus Xylaria sp.(2508). J Nat Prod 71(7) (2008) 1251-1253.

[27] M. Govindappa et al., In vitro anti-HIV activity of partially purified coumarin(s) isolated from fungal endophyte, Alternaria species of Calophyllum inophyllum. Pharm Pharma 6 (2015) 321-328.

DOI: https://doi.org/10.4236/pp.2015.67034

[28] Z. Huang et al., A new furanocoumarin from the mangrove endophytic fungus Penicillium sp. (ZH16). Nat Prod Res 26(14) (2012) 1291-1295.

DOI: https://doi.org/10.1080/14786419.2011.569502

[29] K. Gopalakrishnan, R. Udaykumar, GC-MS analysis of phytocompounds of lead and stem of Marsilea quadrifolia (L.). Inter J Biochem Res 4(6) (2014) 517-526.

DOI: https://doi.org/10.9734/ijbcrr/2014/11350

[30] Z. Deng et al., A new cinnamic acid derivative from plant derived endophytic fungus Pyronema sp. Nat Pro Res 31(2) (2017) 2413-2419.

DOI: https://doi.org/10.1080/14786419.2017.1311890

[31] M.M. Hulikere et al., Antiangiogenic and antioxidant activity of endophytic fungus isolated from seaweed (Sargassum wightii). Asian J Bioch 11 (2016) 168-176.

DOI: https://doi.org/10.3923/ajb.2016.168.176

[32] M. Yadav, A. Yadav, J.P. Yadav, In vitro antioxidant activity and total phenolic content of endophytic fungi isolated from Eugenia jambolina Lam. Asian Pac J Trop Med 7S1 (2014) S256-261.

DOI: https://doi.org/10.1016/s1995-7645(14)60242-x

[33] A.A. Zanwar, M.V. Hegde, S.L. Bodhankar, In vitro antioxidant activity of ethanolic extract of Linum usitatissimum. Pharmacol Online 1 (2010) 683-696.

[34] W. Brand-Williams, M.E. Cuvelier, C. Berset, Use of a free radical method to evaluate antioxidant activity. Lwt Food Sci Technol 28 (1995) 25–30.

DOI: https://doi.org/10.1016/s0023-6438(95)80008-5

[35] H.M. Manjunath et al., Antiangiogenic and antioxidant activity of endophytic fungus isolated from seaweed (Sargassum wightii). Asian J Biochem 11(4) (2016) 168-176.

DOI: https://doi.org/10.3923/ajb.2016.168.176

[36] G. Abirami, M. Boominathan, Antioxidant activity of endophytic fungi isolated from Hugonia mystax L. J Acad Ind Res 5(1) (2016) 10-13.

[37] D.S. Arora, P. Chandra, Antioxidant activity of Aspergillus fumigatus. ISRN Pharm (2011) 619395.

DOI: https://doi.org/10.5402/2011/619395

[38] T. Umashankar, M. Govindappa, Y.L. Ramachandra, In vitro antioxidant and antimicrobial activity of partially purified coumarins from fungal endophytes of Crotalaria pallida. Inter J Cur Microb Appl Sci 3(8) (2014) 58-72.

[39] P. Tiwari, B. Nathiya, G. Mahalingam, Antidiabetic activity of endophytic fungi isolated from Ficus religiosa. Asian J Pharm Clin Res 10 (2017) 59-61.

DOI: https://doi.org/10.22159/ajpcr.2017.v10i4.14718

[40] D.R. Wulan, E.P. Utomo, C. Mahdi, Antidiabetic activity of Ruellia tuberose L., role of α-amylase inhibitor: in silico, in vitro and in vivo approaches. Biochem Res Int (2015) 349261.

DOI: https://doi.org/10.1155/2015/349261

[41] K.M. Kumar et al., Anti-diabetic activity of endophytic fungi, Penicillium species of Tabebuia argentea: an in silico and experimental analysis. Res J Phytochem 11(2) (2017) 90-110.

DOI: https://doi.org/10.3923/rjphyto.2017.90.110

[42] S. Yogisha, K.A. Raveesha, Dipeptidyl peptidase activity of Mangifera indica. J Nat Prod 3 (2010) 76-79.

[43] B.P. Wellensiek et al., Inhibition of HIV-1 replication by secondary metabolites from endophytic fungi of desert plants. The Open Vir J 7 (2013) 72-80.

DOI: https://doi.org/10.2174/1874357920130624002

[44] B. Singh et al., Cholinesterase inhibitory potential of different Alternaria spp. and their phylogenetic relationships. Biologia 69(1) (2014) 10-14.

DOI: https://doi.org/10.2478/s11756-013-0294-z

[45] G. Rajakumar et al., Evaluation of anti-cholinesterase, antibacterial and cytotoxic activities of synthesized silver nanoparticles using from Mellettia pinnata flower extract. Microb Pathog 103 (2017) 123-128.

DOI: https://doi.org/10.1016/j.micpath.2016.12.019

[46] X.L. Piao et al., Antioxidant activity of furanocoumarins isolated from Angelicae dahuricae. J Ethnopharm 93(2-3) (2004) 243-246.

[47] K. Al-Majedy et al., Antioxidant activities of 4-methylumbelliferone derivatives. PLOS One 11(5) (2016) e0156625.

DOI: https://doi.org/10.1371/journal.pone.0156625

[48] J. Kossakowski, A. Wojciechowska, A.E. Koziol, Synthesis of amino acid derivatives of 10-(diphenylmethylene)-4-azatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione as potential psychotropic and / anti-HIV agents. Acta Polon Pharm 63(4) (2006) 261-264.

Show More Hide
Cited By:
This article has no citations.