Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

IJPMS > IJPMS Volume 19 > Introducing a Finite State Machine for Processing...
< Back to Volume

Introducing a Finite State Machine for Processing Collatz Sequences

Full Text PDF


The present work will introduce a Finite State Machine (FSM) that processes any Collatz Sequence; further, we will endeavor to investigate its behavior in relationship to transformations of a special infinite input. Moreover, we will prove that the machine’s word transformation is equivalent to the standard Collatz number transformation and then discuss the possibilities for utilizing this approach for solving similar problems. The benefit of this approach is that the investigation of the word transformation performed by the Finite State Machine is less complicated than the traditional number-theoretical transformation.


International Journal of Pure Mathematical Sciences (Volume 19)
E. Sultanow et al., "Introducing a Finite State Machine for Processing Collatz Sequences", International Journal of Pure Mathematical Sciences, Vol. 19, pp. 10-19, 2017
Online since:
December 2017

[1] S.W. Williams, Million Buck problems, National Association of Mathematicians Newsletter. 31(2) (2000) 1-3.

[2] J.C. Lagarias, The ultimate challenge: The 3x + 1 problem, American Mathematical Society, (2010).

[3] J.C. Lagarias, The 3x + 1 problem: An annotated bibliography (1963-1999), 2011. Available: arXiv: math/0309224v13.

[4] J.C. Lagarias, The 3x + 1 problem: An annotated bibliography, II (2000-2009), 2012. Available: arXiv: math/0608208v6.

[5] J.C. Lagarias, The 3x+1 problem and its generalizations, The American Mathematical Monthly. 92(1) (1985) 3-23.

[6] S. Kahermanes, Collatz conjecture, Math 301 Term Paper, San Francisco State University, (2011).

[7] M. Klisse, Das Collatz-Problem: Lösungs- und Erklärungsansätze für die 1937 von Lothar Collatz entdeckte (3n+1)-Vermutung, (2010).

[8] C.A. Feinstein, The Collatz 3n + 1 conjecture is unprovable, Global Journal of Science Frontier Research Mathematics and Decision Sciences. 12(8) (2012) 13-15.

[9] E. Akin, Why is the 3x + 1 problem hard? In: I. Assani (Ed. ), Chapel Hill Ergodic Theory Workshops: June 8-9, 2002 and February 14-16, 2003, University of North Carolina, Chapel Hill, NC, Vol. 356 of Contemporary Mathematics, American Mathematical Society, 2004, pp.1-20.


[10] D.J. Bernstein, J.C. Lagarias, The 3x + 1 conjugacy map, Canadian Journal of Mathematics. 48(6) (1996) 1154-1169.

[11] P. Michel, Simulation of the Collatz 3x + 1 function by Turing machines, 2014. Available: arXiv: 1409. 7322v1.

[12] L. Berg, G. Meinardus, Functional equations connected with the Collatz problem, Results in Mathematics. 25(1-2) (1994) 1-12.


[13] L. Berg, G. Meinardus, The 3n + 1 Collatz problem and functional equations, Rostocker Mathematisches Kolloquium. 48 (1995) 11-18.

[14] G. Opfer, An analytic approach to the Collatz 3n + 1 problem, Hamburger Beiträge zur Angewandten Mathematik, No. 2011-09, University of Hamburg, (2011).

[15] B. de Weger, Comments on Opfer's alleged proof of the 3n + 1 conjecture, Technische Universiteit Eindhoven, 2011. Available: http: /www. win. tue. nl/ bdeweger/downloads/opfercomments/20v0. 2. pdf.

[16] Ş. Andrei, C. Masalagiu, About the Collatz conjecture, Acta Informatica. 35(2) (1998) 167-179.


[17] S. Kak, Digit Characteristics in the Collatz 3n + 1 iterations. Available: https: /subhask. okstate. edu/sites/default/files/collatz4. pdf.

[18] R. Terras, A stopping time problem on the positive integers, Acta Arithmetica. 30(3) (1976) 241-252.


[19] T. Oliveira e Silva, Maximum excursion and stopping time record- holders for the 3x+1 problem: Computational results, Mathematics of Computation. 68(225) (1999) 371-384.


[20] M.A. Idowu, A novel theoretical framework formulated for information discovery from number system and Collatz conjecture data, Procedia Computer Science. 61 (2015) 105-111.


[21] M. Trümper, The Collatz problem in the light of an infinite free semigroup, Chinese Journal of Mathematics. 2014 (2014) Article ID 756917.


[22] S. Kohl, On conjugates of Collatz-type mappings, International Journal of Number Theory. 4(1) (2008) 117-120.

[23] K. Hicks et al., A polynomial analogue of the 3n + 1 problem, The American Mathematical Monthly. 115(7) (2008) 615-622.

[24] B. Snapp, M. Tracy, The Collatz problem and analogues, Journal of Integer Sequences. 11(4) (2008) Article 08. 4. 7.

Show More Hide
Cited By:
This article has no citations.