S.S. Benchallia, P.G. Patilb* and Pushpa M. Nalwadc
Department of Mathematics, Karnatak University, Dharwad, India

*Corresponding Author

Keywords: $g\omega\alpha$-closed, $g\omega\alpha$-continuous, $g\omega\alpha$-irresolute, locally closed, $g\omega\alpha$-locally closed.

Abstract. In the year 2014, the present authors introduced and studied the concept of $g\omega\alpha$-closed sets in topological spaces. The purpose of this paper to introduce a new class of locally closed sets called $g\omega\alpha$-locally closed sets (briefly $g\omega\alpha$-lcg-sets) and study some of their properties. Also $g\omega\alpha$-locally closed continuous (briefly $g\omega\alpha$-lcg-continuous) functions and its irresolute functions are introduced and studied their properties in topological spaces.

1. Introduction

The notion of locally closed sets was introduced by Bourbaki [6]. According to him, a subset of a topological space X is locally closed in X if it is the intersection of an open set and closed set in X. Kuratowski and Sierpinski [10] considered the difference of two closed subsets of an n-dimensional euclidean space. Implicit in their work is the notion of a locally closed subset of a topological space X. Stone [17] has used the term FG for a locally closed subset as the spaces that in every embedding are locally closed. The results of Borges [5] show that locally closed sets play an important role in the context of simple extension. Ganster and Reilly [8] has introduced locally closed sets, which are weaker forms of both open and closed sets and they used locally closed sets to define LC-continuity and LC-irresoluteness. Sundaram [18] introduced the concept of generalized locally closed sets. After that Balachandran et al. [3], Gnanambal [9], Arokhiarani et al. [1], Pushpalatha [14], Shaik John [15] and P.G. Patil [13] have introduced α-locally closed, generalized locally semi closed, semi generalized locally closed, regular generalized locally closed, strongly locally closed, ω-locally closed and $g\alpha\omega$-locally closed sets and their continuous maps in topological spaces respectively. Also various authors have contributed to the development of generalizations of locally closed sets and locally continuous maps in topological spaces.

In this paper, we introduced the notion of $g\omega\alpha$-locally closed sets which are denoted by $g\omega\alpha$–LC sets and study some of the fundamental properties of $g\omega\alpha$–LC sets in generalized topological spaces.

2. Preliminary

Throughout this paper (X, τ) or simply X represents topological space on which no separation axioms are assumed unless and otherwise mentioned. For a subset A of X, $\text{cl}(A)$, $\text{int}(A)$ and A^c denote the closure of A, interior of A and complement of A respectively. If A is a subset of a space τ, then $C_\tau(A)$ is the smallest τ-closed set containing A and $I_\tau(A)$ is the largest τ-open set contained in A.

For our analysis, we require the following basic definitions.

Definition 2.1. A subset A of a topological space (X, τ) is called
(i) α-open set [12] if $A \subseteq \text{int} (\text{cl}(\text{int}(A)))$.
(iii) Regular open set [16] if $A = \text{int} (\text{cl}(A))$.
The complements of the above mentioned sets are called their respective closed sets.

Definition 2.2. [4] A subset A of X is ω_α-closed if $\alpha \text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is ω_α-open in X.

The family of all ω_α -closed subsets of the space X is denoted by $\omega_\alpha C(X)$.

Definition 2.3. [4] The intersection of all ω_α-closed sets containing a set A is called ω_α-closure of A and is denoted by $\omega_\alpha\text{-cl}(A)$.

A set A is ω_α -closed set if and only if $\omega_\alpha\text{-cl}(A) = A$.

Definition 2.4. [4] The union of all ω_α-open sets contained in A is called ω_α-interior of A and is denoted by $\omega_\alpha\text{-int}(A)$.

A set A is ω_α-open if and only if $\omega_\alpha\text{-int}(A) = A$.

Definition 2.5. A topological space X is said to be

1. locally closed [8] if $A = U \cap V$ where U is open set and V is closed set in X.
2. generalized locally closed (briefly glc -closed) [2] if $A = U \cap V$ where U is g-open set and V is g-closed set in X.
3. generalized locally semi-closed (briefly gscl-closed) [9] if $A = U \cap V$ where U is g-open set and V is semi-closed set in X.
4. strongly generalized locally closed (briefly gslc -closed) [14] if $A = U \cap V$ where U is strongly g-open set and V is strongly g-closed set in X.
5. α -locally closed (briefly alc -closed) [9] if $A = U \cap V$ where U is α -open set and V is α -closed set in X.
6. ω -locally closed (briefly olc -closed) [15] if $A = U \cap V$ where U is ω -open set and V is ω -closed set in X.
7. ω_α -locally closed (briefly ω_αlc -closed[13] if $A = U \cap V$ where U is ω_α -open set and V is ω_α -closed set in X.

Definition 2.6. A topological space X is said to be

1. sub maximal space [7] if every dence subset of X is open in X.
2. door space [2] if every subset of X is either open or closed in X.

Definition 2.7. A function $f: X \to Y$ is called

1. LC-continuous [8] if $f^{-1}(G)$ is locally closed set in X for each open set G of Y.
2. LC-irresolute [8] if $f^{-1}(G)$ is locally closed set in X for locally closed set G of Y.

3. Locally ω_α -Closed Set

In this section, we introduce ω_αalc -sets and study some of their properties.

Definition 3.1. Let A be a subset of X. Then A is called locally ω_α -closed if there exists an open set U and ω_α -closed set F of X such that $A = U \cap F$.

The collection of all locally ω_α -closed sets is denoted by $LG\omega_\alpha C(X)$.

Definition 3.2. A space is said to have the ω_α-closure preserving property if $\omega_\alpha -\text{cl}(A)$ is always ω_α -closed.

Theorem 3.1. Suppose X has the ω_α-closure preserving property and let A be a subset of X. Then $A \in LG\omega_\alpha C(X)$ if and only if $A = U \cap \omega_\alpha -\text{cl}(A)$ for some open set U.

Proof. Let $A = LG\omega_\alpha C(X)$. Then $A = U \cap F$ where U is an open and F is ω_α -closed. By definition 3.2, $\omega_\alpha -\text{cl}(A)$ is ω_α -closed in X, $A \subseteq F$ implies $\omega_\alpha -\text{cl}(A) \subseteq F$. Now,
A = A \cap g_{\omega\alpha} \text{ - cl}(A) = U \cap F \cap g_{\omega\alpha} \text{ - cl}(A) = U \cap g_{\omega\alpha} \text{ - cl}(A). Therefore, \ A = U \cap g_{\omega\alpha} \text{ - cl}(A) for some open set U.

Conversely. Assume that \ A = U \cap g_{\omega\alpha} \text{ - cl}(A) for some open set U. By definition 3.2, \ g_{\omega\alpha} \text{ - cl}(A) is \ g_{\omega\alpha} \text{-closed} in X. Therefore, \ A \in LG_{\omega\alpha}(X). This proves the theorem.

Definition 3.3. Let \(A \) be a subset of \(X \). Then \(A \) is called \(g_{\omega\alpha} \)-locally closed if there exists \(g_{\omega\alpha} \)-open set \(U \) and a \(g_{\omega\alpha} \)-closed set \(F \) of \(X \) such that \(A = U \cap F \).

The collection of all \(g_{\omega\alpha} \)-locally closed sets of \(X \) will be denoted by \(G_{\omega\alpha}LC(X) \).

Theorem 3.2. For a submaximal space \(X \), \(LG_{\omega\alpha}(X) \subseteq GSLC(X) \).

Proof. Let \(A = LG_{\omega\alpha}(X) \). Then there exist an open set \(U \) and a \(g_{\omega\alpha} \)-closed set \(F \) of \(X \) such that \(A = U \cap F \). In a submaximal space \(X \), every \(g_{\omega\alpha} \)-closed set is \(g\)-closed. Therefore \(F \) is \(g \)-closed. Since every open set is \(g \)-open, it follows that \(A \) is an intersection of \(g \)-open set \(U \) and a \(g \)-closed set \(F \) of \(X \). Therefore, \(A \in GSLC(X) \). This proves the theorem.

Theorem 3.3. Every locally closed set is \(g_{\omega\alpha} \)-locally closed but not conversely.

Proof. From [4] every closed set is \(g_{\omega\alpha} \)-closed. Hence the proof follows.

Example 3.1. Let \(X = \{a, b, c\} \) and \(\tau = \{X, \phi, \{a, b\}\} \). Then \(g_{\omega\alpha}LC(X) = P(X) \) and \(LC(X) = \{X, \phi, \{c\}, \{a, b\}\} \). Then the set \(A = \{a, c\} \) is \(g_{\omega\alpha} \)-locally closed set but not locally closed set in \(X \).

Remark 3.1. If \(A \) is \(\alpha \)-locally closed set in \(X \), then \(A \) is \(g_{\omega\alpha} \)-locally closed in \(X \) but not conversely.

Example 3.2. In example 3.1 \(aLC(X) = \{X, \phi, \{c\}, \{a, b\}\} \). Then the set \(A = \{a, c\} \) is \(g_{\omega\alpha}LC \)-closed but not \(\alpha \)-closed in \(X \).

Theorem 3.4. For a subset \(A \) of \(X \) the followings are equivalent.
1. \(A \) is \(g_{\omega\alpha} \)-locally closed.
2. \(\exists \ U \cap c_{\tau}(A) \), for some \(g_{\omega\alpha} \)-open set \(U \).

Proof. (i) \(\Rightarrow \) (ii) Let \(A \in g_{\omega\alpha}LC(X) \) then there exists a \(g_{\omega\alpha} \)-open set \(U \) and a \(g_{\omega\alpha} \)-closed set \(V \) such that \(A = U \cap V \). Since \(A \subseteq U \) and \(A \subseteq c_{\tau}(A) \), we have \(A \subseteq U \cap c_{\tau}(A) \).

Conversely. Since \(c_{\tau}(A) \subseteq V, U \cap c_{\tau}(A) \subseteq U \cap V = A \), which implies that \(A = U \cap c_{\tau}(A) \).

(ii) \(\Rightarrow \) (i) Since \(U \) is \(g_{\omega\alpha} \)-open and \(c_{\tau}(A) \) is \(g_{\omega\alpha} \)-closed, \(U \cap c_{\tau}(A) \in g_{\omega\alpha}LC(X) \).

Theorem 3.5. Suppose a space \(X \) has the \(g_{\omega\alpha} \)-closure preserving property. Then the followings are equivalent.
1. \(A \in G_{\omega\alpha}LC(X) \).
2. \(A = U \cap g_{\omega\alpha} \text{ - cl}(A) \) for some \(g_{\omega\alpha} \)-open set \(U \).

Proof. (i) \(\Rightarrow \) (ii) Let \(A \in G_{\omega\alpha}LC(X) \). Then there exist a \(g_{\omega\alpha} \)-open subset \(U \) and a \(g_{\omega\alpha} \)-closed subset \(F \) such that \(A = U \cap F \). Since \(A \subseteq U \) and since \(A \subseteq g_{\omega\alpha} \text{ - cl}(A) \). By definition 3.2, \(g_{\omega\alpha} \text{ - cl}(A) \) is \(g_{\omega\alpha} \)-closed, \(g_{\omega\alpha} \text{ - cl}(A) \subseteq F \) and hence \(U \cap g_{\omega\alpha} \text{ - cl}(A) \subseteq U \cap F = A \). Therefore, \(A = U \cap g_{\omega\alpha} \text{ - cl}(A) \). Thus proves (ii).

(ii) \(\Rightarrow \) (i) By definition 3.2, \(g_{\omega\alpha} \text{ - cl}(A) \) is \(g_{\omega\alpha} \)-closed. Therefore. \(A = U \cap g_{\omega\alpha} \text{ - cl}(A) \in G_{\omega\alpha}LC(X) \).
Definition 3.4. Let A be a subset of X. Then A is called $go\alpha^*$-locally closed if there exist $go\alpha$-open set U and an α-closed set F of X such that $A = U \cap F$.

The collection of all $go\alpha^*$-locally closed sets of X will be denoted by $Go\alpha LC^*(X)$.

Definition 3.5. Let A be a subset of X. Then A is called $go\alpha lc^*$-set if there exist an α-open set U and a $go\alpha$-closed set F of X such that $A = U \cap F$.

The collection of all $go\alpha lc^*(X)$ will be denoted by $Go\alpha LC^*(X)$.

Proposition 3.1. For a topological space X the following inclusions hold:
1. $\alpha LC(X) \subseteq Go\alpha LC(X)$.
2. $\alpha LC(X) \subseteq Go\alpha LC^*(X) \subseteq Go\alpha LC(X)$.
3. $\alpha LC(X) \subseteq Go\alpha LC^*(X) \subseteq Go\alpha LC(X)$.

Proof. It follows from the fact that every α-closed set is $go\alpha$-closed in X.

Remark 3.2. We have the following diagram.

The reverse implications are not true shown in the following example.

Example 3.3. Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a, b\}\}$. Then we have:
$\alpha LC(X) = \{X, \phi, \{c\}, \{a, b\}\}$
$Go\alpha LC(X) = P(X)$
$Go\alpha LC^*(X) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}\}$
$Go\alpha LC^*(X) = \{X, \phi, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\}$

(1) The reverse implication need not be true as seen from the above sets.
(2) It can be also seen that $Go\alpha LC^*(X)$ and $Go\alpha LC^*(X)$ are independent.

Definition 3.6. A topological space X is said to be a $go\alpha$-door space if each subset of X is either $go\alpha$-open or $go\alpha$-closed in X.

Example 3.4. Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{b, c\}\}$. Then X is $go\alpha$-door space

Remark 3.3. If X is $go\alpha$-door space

Proposition 3.2. Let X be a $T_{go\alpha}$-space. Then $\alpha LC(X) = Go\alpha LC(X)$.

Proof. Since X is $T_{go\alpha}$-space, every $go\alpha$-open set is α-open and every $go\alpha$-closed set is α-closed. Hence we have $Go\alpha LC(X) \subseteq \alpha LC(X)$. By proposition 3.1(i), $\alpha LC(X) \subseteq Go\alpha LC(X)$.

Hence $Go\alpha LC(X) = \alpha LC(X)$.

Proposition 3.3. For a subset A of a space X the following statements are equivalent:
1. $A \in Go\alpha LC(X)$.
2. $A = U \cap go\alpha - cl(A)$ for some $go\alpha$-open set U in X.
Proof. (i)⇒(ii) Let \(A \in G_{\omega \alpha}LC(X) \). Then there exist a \(g_{\omega \alpha} \)-open set \(U \) and a \(g_{\omega \alpha} \)-closed set \(F \) of \(X \) such that \(A = U \cap F \). Since \(A \subseteq U \) and \(A \subseteq g_{\omega \alpha} - cl(A) \), \(A \subseteq U \cap g_{\omega \alpha} - cl(A) \). Conversely, by definition of \(g_{\omega \alpha} \)-closure, \(g_{\omega \alpha} - cl(A) \subseteq F \) and hence \(U \cap g_{\omega \alpha} - cl(A) \subseteq U \cap F = A \). Therefore \(A = U \cap g_{\omega \alpha} - cl(A) \).

(ii)⇒(i) Assume \(A = U \cap g_{\omega \alpha} - cl(A) \) for some \(g_{\omega \alpha} \)-open set \(U \). Since \(g_{\omega \alpha} - cl(A) \) is \(g_{\omega \alpha} \)-closed, \(A \subseteq U \cap g_{\omega \alpha} - cl(A) \).

Theorem 3.6. Let \(X \) be a \(T_{g_{\omega \alpha}} \)-space. For a subset \(A \) of \(X \) the following statements are equivalent.

1. \(A \in G_{\omega \alpha}LC(X) \).
2. \(A = U \cap g_{\omega \alpha} - cl(A) \) for some \(g_{\omega \alpha} \)-open set \(U \) in \(X \).
3. \(g_{\omega \alpha} - cl(A) - A \) is \(g_{\omega \alpha} \)-closed.
4. \(A \cup (X - g_{\omega \alpha} - cl(A)) \) is \(g_{\omega \alpha} \)-open.

Proof. (i)⇔(ii) Follows from the proposition 3.2.

(ii)⇒(iii) Let \(A = U \cap g_{\omega \alpha} - cl(A) \) for some \(g_{\omega \alpha} \)-open set \(U \) in \(X \).

Now, \(g_{\omega \alpha} - cl(A) - A = g_{\omega \alpha} - cl(A) \cap A^c \)
\[= g_{\omega \alpha} - cl(A) \cap (U \cap g_{\omega \alpha} - cl(A))^c \]
\[= g_{\omega \alpha} - cl(A) \cap [U^c \cup (g_{\omega \alpha} - cl(A))^c] \]
\[= [g_{\omega \alpha} - cl(A) \cap U^c] \cup [g_{\omega \alpha} - cl(A) \cap (g_{\omega \alpha} - cl(A))^c] \]
\[= g_{\omega \alpha} - cl(A) \cap U^c \].

Here \(U^c \) is \(g_{\omega \alpha} \)-closed. Since \(X \) is \(T_{g_{\omega \alpha}} \)-space, \(U^c \) is \(\alpha \)-closed. From [4], the intersection of a \(g_{\omega \alpha} \)-closed set and an \(\alpha \)-closed set is \(g_{\omega \alpha} \)-closed, \(g_{\omega \alpha} - cl(A) - A \) is \(g_{\omega \alpha} \)-closed.

(iii)⇒(iv) Let \(U = X - (g_{\omega \alpha} - cl(A) - A) \). By (iii), \(U \) is a \(g_{\omega \alpha} \)-open set in \(X \) and \(A = U \cap g_{\omega \alpha} - cl(A) \).

(iv)⇒(iii) Let \(F = g_{\omega \alpha} - cl(A) - A \). Then \(X - F = A \cup (X - g_{\omega \alpha} - cl(A)) \) holds. Also, \(X - F \) is \(g_{\omega \alpha} \)-open, since \(F \) is \(g_{\omega \alpha} \)-closed by (iii). Hence \(A \cap (X - g_{\omega \alpha} - cl(A)) \) is \(g_{\omega \alpha} \)-open.

Theorem 3.7. For a subset \(A \) of \(X \) the following statements are equivalent:

1. \(A \in G_{\omega \alpha}LC'(X) \).
2. \(A = U \cap \text{acl}(A) \) for some \(g_{\omega \alpha} \)-open set \(U \) in \(X \).
3. \(\text{acl}(A) - A \) is \(g_{\omega \alpha} \)-closed.
4. \(A \cup (X - \text{acl}(A)) \) is \(g_{\omega \alpha} \)-open.

Proof. Using the fact every \(\alpha \)-closed set is \(g_{\omega \alpha} \)-closed and from theorem 3.6, the proof follows.

Theorem 3.8. For a subset \(A \) of \(X \), \(A \in G_{\omega \alpha}LC''(X) \), if and only if \(A = U \cap g_{\omega \alpha} - cl(A) \) for some \(\alpha \)-open set \(U \) in \(X \).

Proof. Necessity. Let \(A \in G_{\omega \alpha}LC''(X) \). Then by definition \(A = U \cap F \) where \(U \) is an \(\alpha \)-open set and \(F \) is a \(g_{\omega \alpha} \)-closed set containing \(A \). Since \(F \) is a \(g_{\omega \alpha} \)-closed set, we have \(g_{\omega \alpha} - cl(A) \subseteq F \), which implies that \(U \cap g_{\omega \alpha} - cl(A) \subseteq U \cap F = A \). Since \(A \subseteq U \) and \(A \subseteq g_{\omega \alpha} - cl(A) \) we have \(A \subseteq U \cap g_{\omega \alpha} - cl(A) \). Therefore \(A = U \cap g_{\omega \alpha} - cl(A) \), where \(U \) is an \(\alpha \)-open.

Sufficient. Assume that \(A = U \cap g_{\omega \alpha} - cl(A) \) for some \(\alpha \)-open set \(U \) in \(X \). Since \(g_{\omega \alpha} - cl(A) \) is \(g_{\omega \alpha} \)-closed, we have \(A \in G_{\omega \alpha}LC''(X) \).
Definition 3.7. A subset A of X is called $\omega\alpha g$-dense if $g\omega\alpha \cap (A) = X$.

Example 3.5. Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}\}$. The only $g\omega\alpha$-closed set containing $\{a\}$ is X and hence $g\omega\alpha \cap (a) = X$. Then the subset $\{a\}$ is $g\omega\alpha$-dense in X.

Proposition 3.4. In a topological space X, every $g\omega\alpha$-dense set is α-dense but not conversely.

Proof. Let A be $g\omega\alpha$-dense set in X. Then $g\omega\alpha \cap (A) = X$. Since $g\omega\alpha \cap (A) \subseteq \alpha \cap (A)$, we have $\alpha \cap (A) = X$. Hence A is α-dense.

Example 3.6. Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}, \{b,c\}\}$. Then the subset $\{a, b\}$ is α-dense in X but not $g\omega\alpha$-dense in X, as $g\omega\alpha \cap \{a, b\} = \emptyset$.

Definition 3.8. A topological space X is called $g\omega\alpha$-submaximal (resp. $g\omega\alpha^*$-submaximal) if every $g\omega\alpha$-dense (resp. α-dense) subset is $g\omega\alpha$-open in X.

Proposition 3.5. Every $g\omega\alpha^*$-submaximal space is $g\omega\alpha$-submaximal.

Proof. Let X be a $g\omega\alpha^*$-submaximal space and A be a $g\omega\alpha$-dense subset of X. By proposition 3.4, A is α-dense in X. By assumption, A is $g\omega\alpha$-open and hence $A \in g\omega\alpha LC(X)$ and hence $P(X) = g\omega\alpha LC(X)$.

Conversely. Let A be a $g\omega\alpha$-dense set in X and $P(X) = g\omega\alpha LC(X)$. Since A is $g\omega\alpha$-dense, $g\omega\alpha \cap (A) = X$. Then $A = A \cap (X - g\omega\alpha \cap (A))$. Since $A \in g\omega\alpha LC(X)$, $A = A \cap (X - g\omega\alpha \cap (A))$ is $g\omega\alpha$-open, by theorem 3.6. Hence X is $g\omega\alpha$-submaximal.

Theorem 3.9. Let X be a $T_{g\omega\alpha}$-space. Then X is $g\omega\alpha$-submaximal if and only if $P(X) = g\omega\alpha LC(X)$.

Proof. Let X be $g\omega\alpha$-submaximal and $A \in P(X)$. Consider $V = A \cup (X - g\omega\alpha \cap (A) = X - (g\omega\alpha \cap (A) - A)$. Then $g\omega\alpha \cap (V) = X$. That is V is $g\omega\alpha$-dense in X. By assumption, V is $g\omega\alpha$-open. Then by theorem 3.6, $A \in g\omega\alpha LC(X)$ and hence $P(X) = g\omega\alpha LC(X)$.

Conversely. Let A be a $g\omega\alpha$-dense set in X and $P(X) = g\omega\alpha LC(X)$. Since A is $g\omega\alpha$-dense, $g\omega\alpha \cap (A) = X$. Then $A = A \cap \emptyset = A \cup (X - g\omega\alpha \cap (A))$. Since $A \in g\omega\alpha LC(X)$, $A = A \cup (X - g\omega\alpha \cap (A))$ is $g\omega\alpha$-open, by theorem 3.6. Hence X is $g\omega\alpha$-submaximal.

Theorem 3.10. Let A and B be any two subsets of X and let $A \subseteq B$. Suppose that the collection of all $g\omega\alpha$-open subsets of X is closed under finite intersection. If B is $g\omega\alpha$-open and $A \in g\omega\alpha LC^*(B, \tau \setminus B)$, then $A \in g\omega\alpha LC^*(X)$.

Proof. If $A \in g\omega\alpha LC^*(B, \tau \setminus B)$, then there exist $g\omega\alpha$-open set G in $(B, \tau \setminus B)$ such that $A = G \cap cl_b(A)$ where $cl_b(A) = B \cap cl(A)$. Since G and B are $g\omega\alpha$-open then $G \cap B$ is $g\omega\alpha$-open. This implies that $A = G \cap (B \cap cl(A)) = (G \cap B) \cap cl(A)$ is $g\omega\alpha cl^*$ set in X. So $A \in g\omega\alpha LC^*(X)$.

Theorem 3.11. If the collection of all $g\omega\alpha$-closed subset of X is closed under finite intersection if B is $g\omega\alpha$-closed, open in X and $A \in g\omega\alpha LC^*(B, \tau \setminus B)$ then $A \in g\omega\alpha LC(X)$.

Proof. Let $A \in g\omega\alpha LC^*(B, \tau \setminus B)$. Then there exist $g\omega\alpha$-open set G in $(B, \tau \setminus B)$ and closed set F in $(B, \tau \setminus B)$ such that $A = G \cap F$. Since F is closed in $(B, \tau \setminus B)$, $F = V \cap B$ for some closed set V of X. So V and B are $g\omega\alpha$-closed sets in X. Therefore F is the intersection of $g\omega\alpha$-closed sets V and B. So F is also $g\omega\alpha$-closed set in X. Therefore $A = G \cap (V \cap B) \in g\omega\alpha LC(X)$.

4. \(g_{\omega \alpha} \)-Locally Continuous Functions

In this section, \(g_{\omega \alpha} \)-continuous functions, \(g_{\omega \alpha} \)-continuous functions and \(g_{\omega \alpha} \)-continuous functions are defined and their properties are obtained. Also \(g_{\omega \alpha} \)-irresolute functions, \(g_{\omega \alpha} \)-irresolute functions and \(g_{\omega \alpha} \)-irresolute functions are defined and their properties are discussed.

Definition 4.1. Let \(f : X \to Y \) be a function. Then \(f \) is called,
1. \(g_{\omega \alpha} \)-continuous if \(f^{-1}(V) \in G_{\omega \alpha}(X) \) for each \(V \in G_{\omega \alpha}(Y) \).
2. \(g_{\omega \alpha} \)-continuous if \(f^{-1}(V) \in G_{\omega \alpha}^*(X) \) for each \(V \in G_{\omega \alpha}^*(Y) \).
3. \(g_{\omega \alpha} \)-continuous if \(f^{-1}(V) \in G_{\omega \alpha}^{**}(X) \) for each \(V \in G_{\omega \alpha}^{**}(Y) \).

Theorem 4.1. Let \(f : X \to Y \) be a function. Then the following statements are true:
1. If \(f \) is \(a_{\alpha} \)-continuous then it is \(G_{\omega \alpha} \)-continuous, \(G_{\omega \alpha}^* \)-continuous and \(G_{\omega \alpha}^{**} \)-continuous.
2. If \(f \) is \(G_{\omega \alpha}^* \)-continuous or \(G_{\omega \alpha}^{**} \)-continuous then it is \(G_{\omega \alpha} \)-continuous.

Proof. 1. Follows from the fact that every \(a_{\alpha} \)-set is \(g_{\omega \alpha} \)-set, \(g_{\omega \alpha}^* \)-set and \(g_{\omega \alpha}^{**} \)-set by proposition 3.1.
2. Since every \(g_{\omega \alpha}^* \)-set is \(g_{\omega \alpha} \)-set and every \(g_{\omega \alpha}^{**} \)-set is \(g_{\omega \alpha} \)-set, the proof follows.

The converse of the above theorem need not be true as seen from the following example.

Example 4.1. Let \(X = Y = \{a, b, c\} \) and \(\tau = \{X, \phi, \{a, \phi\}, \{b, c\}\} \) and \(\mu = \{X, \phi, \{a, \phi\}, \{a, c\}\} \). Let \(f : X \to Y \) be an identity function then \(f \) is \(G_{\omega \alpha} \)-continuous, \(G_{\omega \alpha}^* \)-continuous and \(G_{\omega \alpha}^{**} \)-continuous but not \(a_{\alpha} \)-continuous. Since for the open set \(\{a, c\} \) in \(Y \), \(f^{-1}(a, c) = \{a, c\} \not\in a_{\alpha}(X) \).

Definition 4.2. Let \(f : X \to Y \) be a function. Then \(f \) is called,
1. \(g_{\omega \alpha} \)-irresolute if \(f^{-1}(V) \in G_{\omega \alpha}(X) \) for each \(V \in G_{\omega \alpha}(Y) \).
2. \(g_{\omega \alpha} \)-irresolute if \(f^{-1}(V) \in G_{\omega \alpha}^*(X) \) for each \(V \in G_{\omega \alpha}^*(Y) \).
3. \(g_{\omega \alpha} \)-irresolute if \(f^{-1}(V) \in G_{\omega \alpha}^{**}(X) \) for each \(V \in G_{\omega \alpha}^{**}(Y) \).

Proposition 4.1. Let \(f : X \to Y \) be a \(g_{\omega \alpha} \)-irresolute map. If \(B \in G_{\omega \alpha}(Y) \), then \(f^{-1}(B) \in G_{\omega \alpha}(X) \).

Proof. Let \(f : X \to Y \) be a \(g_{\omega \alpha} \)-irresolute function. Let \(B \in G_{\omega \alpha}(Y) \). Then there exist a \(g_{\omega \alpha} \)-open set \(G \) and a \(g_{\omega \alpha} \)-closed set \(H \) such that \(B = G \cap H \) which implies that \(f^{-1}(B) = f^{-1}(G) \cap f^{-1}(H) \). Since \(f \) is a \(g_{\omega \alpha} \)-irresolute, \(f^{-1}(G) \) and \(f^{-1}(H) \) are \(g_{\omega \alpha} \)-open and \(g_{\omega \alpha} \)-closed in \(X \) respectively. Hence \(f^{-1}(B) \in G_{\omega \alpha}(X) \).

Theorem 4.2. Let \(f : X \to Y \) be a \(g_{\omega \alpha} \)-irresolute. Then \(f \) is \(G_{\omega \alpha} \)-irresolute.

Proof. Follows from the above proposition 4.1.

The converse of the above proposition need not be true as seen from the following example.

Example 4.2. Let \(X = Y = \{a, b, c\} \) and \(\tau = \{X, \phi, \{b, \phi\}, \{a, b\}, \{b, c\}\} \) and \(\mu = \{X, \phi, \{a, \phi\}, \{a, c\}\} \). Let \(f : X \to Y \) be an identity function then \(f \) is \(G_{\omega \alpha} \)-irresolute, but not \(g_{\omega \alpha} \)-irresolute. Since for the \(g_{\omega \alpha} \)-closed set \(\{b, c\} \) in \(Y \), \(f^{-1}(b, c) = \{b, c\} \) is not \(g_{\omega \alpha} \)-closed in \(X \).
Theorem 4.3. If $f: X \to Y$ is $\omega\alpha$-continuous ($\omega\alpha$-continuous or $\omega\alpha$**-continuous) and X is a T_{good} then f is $aL\alpha$-continuous.

Proof. Let $f: X \to Y$ be $\omega\alpha$-continuous and V be an open set in Y. Since f is $\omega\alpha$ ($\omega\alpha$, $\omega\alpha$**) continuous, $f^{-1}(V)$ is $\omega\alpha$-set ($\omega\alpha$-set, $\omega\alpha$**-set) in X. Since X is T_{good}-space, $f^{-1}(V)$ is $\alphaL\alpha$ set in X. By proposition 3.2. Hence f is $aL\alpha$-continuous.

Theorem 4.4. Any function defined on an α-door space is $\omega\alpha$-irresolute.

Proof. Let $f: X \to Y$ be a function where X is an α-door space and Y is any space. Let $A \in \omega\alphaLC(Y)$. Then by assumption on X, $f^{-1}(A)$ is either α-open or α-closed. Since every α-closed set is $g\alpha$-closed, $f^{-1}(V) \in \omega\alphaLC(X)$. Therefore f is $\omega\alpha$-irresolute.

Theorem 4.5. Let X be a T_{good}-space. If X is $\omega\alpha$-submaximal then every function having X as its domain is $\omega\alpha$-irresolute.

Proof. Let X be T_{good}-space and $\omega\alpha$-submaximal. Let $f: X \to Y$ be any map. Then by theorem 3.9 $P(X) = \omega\alphaLC(X)$. If U is $\omega\alpha$-set of Y, then $f^{-1}(V) \in P(X) = \omega\alphaLC(X)$ and hence f is $\omega\alpha$-irresolute.

Theorem 4.6. Let $f: X \to Y$ and $g: Y \to Z$ be any two maps. Then,

1. $g \circ f: X \to Z$ is $\omega\alpha$-irresolute (resp. $\omega\alpha$*-irresolute, $\omega\alpha$**-irresolute) if f is $\omega\alpha$-irresolute (resp. $\omega\alpha$*-irresolute, $\omega\alpha$**-irresolute) and g is $\omega\alpha$-irresolute (resp. $\omega\alpha$*-irresolute, $\omega\alpha$**-irresolute).

2. $g \circ f: X \to Z$ is $\omega\alpha$-continuous if f is $\omega\alpha$-irresolute and g is $\omega\alpha$-continuous.

Proof. (i) Let $V \in \omega\alphaLC(Z)$ (resp. $V \in \omega\alphaLC^*(Z)$, $V \in \omega\alphaLC^{**}(Z)$). Since g is $\omega\alpha$-irresolute (resp. $\omega\alpha$*-irresolute, $\omega\alpha$**-irresolute), $g^{-1}(V) \in \omega\alphaLC(Y)$ (resp. $g^{-1}(V) \in \omega\alphaLC^*(Y)$, $g^{-1}(V) \in \omega\alphaLC^{**}(Y)$). Since f is $\omega\alpha$-irresolute (resp. $\omega\alpha$*-irresolute, $\omega\alpha$**-irresolute), $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1} \in \omega\alphaLC(X)$ (resp. $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1} \in \omega\alphaLC^*(X)$, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1} \in \omega\alphaLC^{**}(X)$). Therefore $g \circ f$ is $\omega\alpha$-irresolute (resp. $\omega\alpha$*-irresolute, $\omega\alpha$**-irresolute).

(ii) Let V be any open set in Z. Since g is $\omega\alpha$-continuous, $g^{-1}(V) \in \omega\alphaLC(Y)$. Since f is $\omega\alpha$-irresolute, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1} \in \omega\alphaLC(X)$. Therefore $g \circ f$ is $\omega\alpha$-continuous.

Acknowledgement

The authors are grateful to the University Grants Commission, New Delhi, India for its financial support under UGC-SAP-III DRS to the Department of Mathematics, Karnatak University, Dharwad, India. Also this research was supported by the University Grants Commission, New Delhi, India. under No.F.4-1/2006(BSR)/7-101/2007(BSR) dated: 20th June, 2012.
References

[1] Arokiarani, K. Balachandran, M. Ganster, Regular generalized locally closed sets and RGL-

[2] K. Balachandran, P. Sundaram, H. Maki, Generalized locally closed sets and GLC-

[3] K. Balachandran, Y. Gnanambal, P. Sundaram, On generalized locally semi-closed sets and

New Results Sci. 7 (2014) 7-14.

[9] Y. Gnanambal, Studies on generalized pre-regular closed sets and generalization of locally

(1921) 22-25.

70 (1963) 36-41.

Bharathiar University, Coimbatore, 2000.

Soc. 41(3) (1937) 375-381.

[18] P. Sundaram, Studies on generalizations of continuous maps in topological spaces, Ph.D