This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] A. Bhattacharyya, C. Patra, Semi-symmetric metric connections on pseudosymmetric Lorentzian -Sasakian manifolds, Acta Comment. Univ. Tartu. Math. 18(2) (2014) 197-210.
DOI: https://doi.org/10.12697/acutm.2014.18.17[2] D.E. Blair, J.A. Oubina, Conformal and related changes of metric on the product of two almost contact metric manifolds, Publications Matematiques. 34 (1990) 199-207.
[3] S.K. Chaubey, R.H. Ojha, On the M-projective curvature tensor of a Kenmotsu manifold, Different. Geom. Dynam. Syst. 12 (2010) 52-60.
[4] L.P. Eisenhart, Riemannian geometry, Princeton Univ. Press, (1926).
[5] U.C. De, S. Mallick, Spacetimes admitting M-projective curvature tensor, Bulg. J. Phys. 39 (2012) 331-338.
[6] S. Dey, A. Bhattacharyya, Some curvature properties of Lorentzian -Sasakian manifolds, Journal of Dynamical Systems and Geometric Theories. 14(1) (2016) 85-98.
[7] A. Gray, L.M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Annali di Matematica Pura ed Applicata. 123(1) (1980) 35-58.
[8] D. Janssens, L. Vanhecke, Almost contact structures and curvature tensors, Kodai Mathematical Journal. 4(1) (1981) 1-27.
[9] B. Laha, Generalized h-Einstein 3-dimensional trans-Sasakian manifold, Advanced Trends in Mathematics. 2 (2015) 28-32. Doi: 10. 18052/www. scipress. com/ATMath. 2. 28.
[10] B. Laha, A. Bhattacharyya, Totally Umbilical hemislant submanifolds of Lorentzian -Sasakian manifold, Mathematical Combinatorics. 1 (2015) 49-56.
[11] H. Karcher, Infinitesimal characterization of Friedman universes, Arch. Math. (Basel). 38(1) (1982) 58-64.
[12] K. Matsumoto, On Lorentzian para contact manifolds, Bull. of Yamagata Univ. Nat. Sci. 12 (1989) 151-156.
[13] I. Mahai, R. Rosca, On Lorentzian P-Sasakian manifolds, Classical Analysis, World Scientific Pable, Singapore, (1992).
[14] R.H. Ojha, A note on the M-projective curvature tensor, Indian J. Pure Appl. Math. 8 (1975) 1531-1534.
[15] R.H. Ojha, M-projectively flat Sasakian manifolds, Indian J. Pure Appl. Math. 17 (1986) 481-484.
[16] J.A. Oubina, New classes of contact metric structures, Publicationes Mathematicae Debre- cen. 32(4) (1985) 187-193.
[17] G.P. Pokhariyal, R.S. Mishra, Curvature tensors and their relativistic signification II, Yokohama Math. J. 18 (1970) 105-108.
[18] A. Prakash, M. Ahmad, A. Srivastava, M-projective curvature tensor on a Lorentzian para-Sasakian manifolds, IOSR Journal of Mathematics (IOSR-JM). 6(1) (2013) 19-23.
[19] D.G. Prakasha, C.S. Bagewadi, N.S. Basavarajappa, On pseudosymmetric Lorentzian -Sasakian manifolds, Int. J. Pure Appl. Math. 48 (2008) 57-65.
[20] D.G. Prakasha, A. Yildiz, Generalized -recurrent Lorentzian -Sasakian manifolds, Commun. Fac. Sci. Univ. Ank. Ser. A. 59(1) (2010) 53-65.
[21] R. Seszcz, L. Verstraelen, S. Yaprak, Warped products realizing a certain condition of pseudosymmetry type imposed on the curvature tensor, Chin. J. Math. 22(2) (1994) 139-157.
[22] Venkatesha, B. Sumangala, On M-projective curvature tensor of a generalized sasakian space form, Acta Math. Univ. Comenianae. 82(2) (2013) 209-217.
[23] A. Yildiz, C. Murathan, On Lorentzian -Sasakian manifolds, Kyungpook Math. J. 45 (2005) 95-103.
[24] A. Yildiz, M. Turan, A class of Lorentzian -Sasakian manifolds, Kyungpook Math. J. 49(4) (2009) 789-799.
[25] A. Yildiz, M. Turan, B.E. Acet, On three-dimensional Lorentzian -Sasakian manifolds, Bull. Math. Anal. Appl. 1 (2009) 90-98.
[26] F. Zengin, On -projectively flat LP-Sasakian manifolds, Ukrainian Math. J. 65(11) (2014) 1725-1732.
DOI: https://doi.org/10.1007/s11253-014-0895-x[27] F. Zengin, -projectively flat spacetimes, Math. Rep. 4(4) (2012) 363-370.