Projectively Flat Finsler Space of Douglas Type with Weakly-Berwald (α, β)-Metric

M. Ramesha$^{a, b}$, S.K. Narasimhamurthya

aDepartment of P.G. Studies and Research in Mathematics, Kuvempu University, Shankaraghatta-577 451, Shivamogga, Karnataka, India

bramfins@gmail.com, nmurthysk@hotmail.com

Keywords: (α, β)-metrics, Finsler space, Projective flatness, Douglas space, Weakly-Berwald space.

Abstract. The present article is organized as follows: In the first part, we characterize the important class of special Finsler (α, β)-metric in the form of $L = \alpha + \frac{\beta}{\beta}$, where α is Riemannian metric and β is differential 1-form to be projectively flat. In the second part, we describe condition for a Finsler space F^n with an (α, β)-metric is of Douglas type. Further we investigate the necessary and sufficient condition for a Finsler space with an (α, β)-metric to be Weakly-Berwald space and Berwald space.

Introduction

A Finsler structure of a manifold M is a function $F: TM \rightarrow [0, \infty)$ with the following properties:

1. Regularity: F is C^∞ on the entire slit tangent bundle $TM|_0$,

2. Positive homogeneity: $F(x, \lambda y) = \lambda F(x, y), \forall \lambda > 0$,

3. Strong convexity: The $n \times n$ Hessian matrix $g_{ij} = \left(\left[\frac{1}{2}F^2\right]_{y'y'}\right)$ is positive definite at every point of $TM|_0$,

where $TM|_0$ denotes the tangent vector y is non-zero in the tangent bundle TM. The pair (M, F) is called a Finsler space.

Let $\alpha = \sqrt{a_{ij}y^iy^j}$ is Riemannian metric, $\beta = b_i(x)dx^i$, $\beta = b_iy^i$ is 1-form. Let

$$|\beta|_\alpha = \sup_{y \in TM} \frac{\beta(x, y)}{\alpha(x, y)} = \sqrt{a^{ij}b_ib_j}.$$

Consider $F(x, y) = \alpha \phi^2 \beta$, $\phi = \phi(s)$ satisfy

$$\phi(s) - s\phi'(s) + (b^2 - s^2)\phi''(s) > 0$$

Then $F(x, y)$ is a Finsler metric (called (α, β)-metric) if and only if $|\beta|_\alpha < b_0$. In particular, if $\phi = 1 + s$, $\alpha = \alpha + \beta$ is called Randers metric. The concept of (α, β)-metric was studied in detail by many authors [1]-[5].

The Finsler space $F^n = (M^n, L(x, y))$ is said to have an (α, β)-metric if L is positively homogeneous function of degree one in two variables $\alpha^2 = a_{ij}y^iy^j$ and $\beta = b_iy^i$. The Douglas space was introduced by S. Bacs and M. Matsumoto, as generalization of the Berwald space from the view point of geodesic equations. The condition for Finsler space with (α, β)-metric of Douglas type studied by many authors [6]-[10].

A Finsler space $F^n = (M^n, L)$ is called projectively flat if for any point p of M^n, there exists a local coordinate neighborhood (U, x^i) of p in which the geodesics can be represented by $(n - 1)$ linear equations of x^i. Such a coordinate system is called rectilinear. The condition for a Finsler space with an (α, β)-metric be projectively flat was studied by many authors [11]-[15].
The functions G_i of a Finsler space with an (α, β)-metric is given by $2G_i = \gamma_{0i}^j + 2B^i_j$. Then we have $G_i^j = \gamma_{0i}^j + B^i_j$ and $G^i_{jk} = \gamma_{0i}^{jk} + B^i_{jk}$, where $\delta_j B^i = B^i_j$ and $\delta_k B^i_j = B^i_{jk}$. A Finsler space with an (α, β)-metric is a weakly-Berwald space, if and only if $B^r_m = \partial B^r_m / \partial y^m$ is a one-form [16]. i.e., $B^r_m = \partial B^r_m / \partial y^m$ is a homogeneous polynomial in (y^i) of degree one. In other words, a Finsler space with an (α, β)-metric is a Berwald space, if and only if B^r_m are homogeneous polynomial in (y^i) of degree two.

M. Matsumoto investigated that a Finsler space with an (α, β)-metric is Weakly-Berwald space, if and only if B^r_m are homogeneous polynomial in (y^i) of degree two [17]. Bacso and Yoshikawa [18], was first investigated the Weakly Berwald space in 2002. Weakly-Berwald spaces are the generalization of Berwald spaces, introduced by M. Matsumoto and studied by several authors ([16], [18], [21], [22], [23]).

In the present article, we devoted to study the condition for a special class of Finsler space with the (α, β)-metric $L = \alpha + \frac{\alpha^2}{\beta}$ to be projectively flat, Douglas space and weakly-Berwald space, where α is Riemannian metric and β is a differential 1-form.

Preliminaries

In a local coordinates, the geodesics of a Finsler metric $F = F(x, y)$ are characterized by system of differential equation:

$$\ddot{x}^i + 2G^i(x(t), \dot{x}(t)) = 0,$$

where $2G_i = \gamma_{0i}^j(x, y)y^jy^i$ and $\gamma_{0i}^j(x, y)$ are Christoffel symbols constructed from $g_{ij}(x, y)$ with respect to x^i. For an (α, β)-metric $L(\alpha, \beta)$, the space $R^n = (M^n, \alpha)$ is called associated Riemannian space with $F^n = (M^n, L(\alpha, \beta))$ ([19], [25]). The covariant differentiation with respect to Levi-Civita connection $\gamma_{0i}^j(x)$ of R^n is denoted by (\cdot).

Now let us define the following notations:

$$r_{ij} = \frac{1}{2}(b_{ij} + b_{ji}), \quad r^i_j = a^{ij}r_{ij}, \quad r_i = br^i_i, \quad s_{ij} = \frac{1}{2}(b_{ij} - b_{ji}), \quad s^i_j = a^{ij}s_{ij}, \quad s_i = b_is^i_i, \quad b^i = a^r_i b_r, \quad b^2 = a^{rs}b_r b_s.$$

According to [11], a Finsler space $F^n = (M^n, L)$ with an (α, β)-metric $L(\alpha, \beta)$ is projectively flat if and only if for any point of space M there exist local coordinate neighborhoods containing the point such that γ_{0i}^j satisfies:

$$(\gamma_{00} - \gamma_{000}y^i/\alpha^2)/2 + (\alpha L_\beta / L_\alpha) s^i_0 + (L_{\alpha\alpha} / L_\alpha)(C + \alpha r_{00}/2\beta)(\alpha^2b^i/\beta - y^i) = 0,$$ \hspace{1cm} (1)

where a subscript 0 means a contraction by (y^i) and C is given by

$$C + (\alpha^2 L_\beta / \beta L_\alpha)s_0 + (\alpha L_{\alpha\alpha} / \beta^2 L_\alpha)(\alpha^2 b^2 - \beta^2)(C + \alpha r_{00}/2\beta) = 0.$$ \hspace{1cm} (2)

By the homogeneity of L, we know that $\alpha^2 L_{\alpha\alpha} = \beta^2 L_\beta$, so that (2) can be rewritten as:

$$\{1 + (L_\beta / \alpha L_\alpha)(\alpha^2 b^2 - \beta^2)\} (C + \alpha r_{00}/2\beta) = (\alpha/2\beta) (r_{00} - (2\alpha L_\beta / L_\alpha)s_0).$$ \hspace{1cm} (3)

If $1 + (L_\beta / \alpha L_\alpha)(\alpha^2 b^2 - \beta^2) \neq 0$, then we can eliminate $(C + \alpha r_{00}/2\beta)$ in (1) and it is written as the form:

$$\{1 + L_\beta / \alpha L_\alpha)(\alpha^2 b^2 - \beta^2)\} \{(\gamma_{00} - \gamma_{000}y^i/\alpha^2)/2 + (\alpha L_\beta / L_\alpha)s_0\}$$

$$+ (L_{\alpha\alpha} / L_\alpha)(\alpha/2\beta) (r_{00} - (2\alpha L_\beta / L_\alpha)s_0)(\alpha^2 b^i / \beta - y^i) = 0.$$ \hspace{1cm} (4)

In [14], the authors state that,
Theorem 1. If \(1 + (L_\beta (\alpha L_\alpha) - \beta^2) \neq 0 \), then a Finsler space \(F^n \) with an \((\alpha, \beta)\)-metric is projectively flat if and only if \(\mu = 0 \), where \(\mu \) is a homogeneous function of \(\alpha \) and \(\beta \) of degree one, we have

\[
\begin{align*}
L_\beta + L_\beta^2 &= L, \\
L_\beta \alpha + L_\beta \beta &= 0, \\
L_\beta \alpha + L_\beta \beta &= 0, \\
L_\beta \alpha + L_\beta \beta &= 0, \\
L_\alpha \alpha + L_\alpha \beta \beta &= -L_\alpha.
\end{align*}
\]

Definition 1 A function \(g(u, ..., u^n) = g(u) \) of \(n \) arguments \(u = (u^i) \) is called positively homogeneous of degree \(r \) in \(u \) [for brevity, \((r) \)-homogeneous in \(u \)], if the equation \(g(pu) = p^rg(u) \) is satisfied for any positive number \(p \).

According to [17], we have the functions \(G^i(x, y) \) of \(F^n \) with the \((\alpha, \beta)\)-metric are written in the form,

\[
2G^i = \{\gamma^i_{00}\} + 2B^i,
\]

\[
B^i = \frac{\alpha L_\beta}{L_\alpha} s^i_0 + C^* \left[\frac{\beta L_\beta}{\alpha L} y^i - \frac{\alpha L_\alpha}{L_\alpha} \left(\frac{1}{\alpha^2} \frac{\partial y^j}{\partial y^i} - \frac{\partial y_j^i}{\partial y^i} \right) \right],
\]

where \(L_\alpha = \frac{\partial L}{\partial \alpha}, \quad L_\beta = \frac{\partial L}{\partial \beta}, \quad L_{\alpha \alpha} = \frac{\partial^2 L}{\partial \alpha \partial \alpha} \), the subscript 0 means contraction by \(y^i \) and we put

\[
C^* = \frac{\alpha \beta (r_{00} L_\alpha - 2 \alpha s_0 L_\beta)}{2(\beta^2 L_\alpha + \alpha \gamma^2 L_{\alpha \alpha})},
\]

where \(\gamma^2 = b^2 \alpha^2 - \beta^2, \quad b^2 = a^2 b_j \) and \(b^2 = a^2 b_i b_j \).

Since \(\gamma^i_{00} = \gamma^i_{jk}(x) y^j y^k \) are homogeneous polynomial in \((y^i)\) of degree two.

From (5), we have

\[
B^{ij} = \frac{\alpha L_\beta}{L_\alpha} (s^i_0 y^j - s^j_0 y^i) + \frac{\alpha^2 L_{\alpha \alpha}}{\beta L_\alpha} C^* (b^i y^j - b^j y^i).
\]

Thus, a Finsler space \(F^n \) with an \((\alpha, \beta)\)-metric is Douglas space if and only if \(B^{ij} = B^i y^j - B^j y^i \) are homogeneous polynomial in \((y^i)\) of degree 3.

According to ([16], [19]), Again consider the function \(G^m \) of \(F^n \) with an \((\alpha, \beta)\)-metric as;

\[
2G^m = \gamma^m_{00} + 2B^m,
\]

where

\[
B^m = (E^*/\alpha)y^m + (\alpha L_\beta / L_\alpha) s^m_0 - (\alpha L_{\alpha \alpha} / L_\alpha) C^* \{(y^m / \alpha) - (\alpha \beta) b^m \},
\]

and

\[
E^* = (\beta L_\beta / L_\alpha) C^*,
\]

\[
C^* = \frac{\alpha \beta (r_{00} L_\alpha - 2 \alpha s_0 L_\beta)}{2(\beta^2 L_\alpha + \alpha \gamma^2 L_{\alpha \alpha})}, \text{ and } \gamma^2 = b^2 \alpha^2 - \beta^2.
\]

Differentiating (8) by \(y^n \) and contracting \(m \) and \(n \) in the obtained equation, we have

\[
B^m = \left[\hat{\partial}_m \left(\frac{\beta L_\beta}{\alpha L} \right) y^m + \frac{n \beta L_\beta}{\alpha L} \right] - \hat{\partial}_m \left(\frac{\alpha L_{\alpha \alpha}}{L_\alpha} \right) \left(\frac{\beta y^m - \alpha b^m}{\alpha \beta} \right) C^*
\]

\[
= \frac{\alpha L_{\alpha \alpha}}{\beta L_\alpha} \left[\hat{\partial}_m \left(\frac{1}{\alpha} \right) y^m + \frac{1}{\alpha} \delta^m_0 - \hat{\partial}_m \left(\frac{\alpha}{\beta} \right) b^m \right] C^* + \left(\frac{\beta L_{\alpha \beta}}{\alpha L L_\alpha} \right) \left(\hat{\partial}_m C^* \right) y^m
\]

\[
+ \left(\frac{\alpha^2 L_{\alpha \alpha \alpha}}{\beta L_\alpha} \right) \left(\hat{\partial}_m C^* \right) b^m + \hat{\partial}_m \left(\frac{\alpha L_\beta}{L_\alpha} \right) s^m_0.
\]

Since \(L = L(\alpha, \beta) \) is a positively homogeneous function of \(\alpha \) and \(\beta \) of degree one, we have

\[
L_\alpha \alpha + L_\beta \beta = L, \quad L_{\alpha \alpha} \alpha + L_{\alpha \beta} \beta = 0,
\]

\[
L_{\beta \alpha} \alpha + L_{\beta \beta} \beta = 0, \quad L_{\alpha \alpha \alpha} \alpha + L_{\alpha \alpha \beta} \beta = -L_{\alpha \alpha}.
\]
From the above and the homogeneity of \((y^i)\), we have the following terms:

\[
\dot{\alpha}_m \left(\frac{\beta L_\alpha}{\alpha L} \right) y^m = -\frac{\beta L_\alpha}{\alpha L}, \quad (11)
\]

\[
\frac{\alpha L_{aa}}{L_\alpha} \left(\frac{\beta y^m - \alpha^2 b^m}{\alpha \beta} \right) = \frac{\gamma^2}{(\beta L_\alpha)^2} \{ L_\alpha L_{aa} + \alpha L_\alpha L_{aaa} - \alpha (L_{aa})^2 \}, \quad (12)
\]

\[
\left[\dot{\alpha}_m \left(\frac{1}{\alpha} \right) y^m + \frac{1}{\alpha} \delta^m_\alpha - \dot{\alpha}_m \left(\frac{\alpha}{\beta} \right) b^m \right] = \frac{1}{\alpha \beta^2} \{ \gamma^2 + (n - 1) \beta^2 \}, \quad (13)
\]

\[
(\dot{\alpha}_m C^*) y^m = 2C^*, \quad (14)
\]

\[
(\dot{\alpha}_m C^*) b^m = \frac{1}{2\alpha \beta^2 \Omega^2} \{ \Omega \{ \beta (\gamma^2 + 2\beta^2) W + 2\alpha^2 \beta^2 L_\alpha r_0 - \alpha \beta \gamma^2 L_{aa} r_{00} - 2\alpha (\beta^3 L_\beta + \alpha^2 \gamma^2 L_{aa}) s_0 \} - \alpha^2 \beta W \{ 2b^2 \beta^2 L_\alpha - \gamma^4 L_{aaa} - b^2 \alpha \gamma^2 L_{aa} \} \}, \quad (15)
\]

\[
\dot{\alpha}_m \left(\frac{\alpha L_\beta}{L_\alpha} \right) s^m_0 = \frac{\alpha^2 L L_{aa} s_0}{(\beta L_\alpha)^2}, \quad (16)
\]

where

\[
W = (r_{00} L_\alpha - 2\alpha s_0 L_\beta),
\]

\[
\Omega = (\beta^2 L_\alpha + \alpha \gamma^2 L_{aa}), \quad \text{provided that } \Omega \neq 0.
\]

\[
Y_i = a_i y^i, \quad s_{00} = 0, \quad b^i s_r = 0, \quad d^j s_{ij} = 0.
\]

Substituting (11)-(16) in to (10), we have

\[
B^m_m = \frac{1}{2\alpha L (\beta L_\alpha)^2 \Omega^2} \{ 2\Omega^2 AC^* + 2\alpha L \Omega^2 B s_0 + \alpha^2 L L_{aa} (C r_{00} + D s_0 + E r_0) \}, \quad (19)
\]

where

\[
A = (n + 1) \beta^2 L_\alpha (\beta L_\alpha \beta - \alpha LL_{aa}) + \alpha \gamma^2 L \{ \alpha (L_{aa})^2 - 2L_\alpha L_{aa} - \alpha L_\alpha L_{aaa} \},
\]

\[
B = \alpha^2 LL_{aa},
\]

\[
C = \beta \gamma^2 \{ -\beta^2 (L_\alpha)^2 + 2b^2 \alpha^3 L_\alpha L_{aa} - \alpha^2 \gamma^2 (L_{aa})^2 + \alpha^2 \gamma^2 L_\alpha L_{aaa} \},
\]

\[
D = 2\alpha \{ \beta^3 (\gamma^2 - \beta^2) L_\alpha L_\beta - \alpha^2 \beta^2 \gamma^2 L_\alpha L_{aa}
- \alpha^2 \beta^2 (\gamma^2 + 2\beta^2) L_\beta L_{aa} - \alpha^3 \gamma^4 (L_{aa})^2 - \alpha^2 \beta^2 \gamma^4 L_\beta L_{aaa} \},
\]

\[
E = 2\alpha^2 \beta^2 L_\alpha \Omega.
\]

According to [16],

Theorem 2. The necessary and sufficient for a Finsler space \(F^n \) with an \((\alpha, \beta)\)-metric to be weakly Berwald space is that \(G^m_m = \gamma^m_0 + B^m_m \) and \(B^m_m \) is a homogeneous polynomial in \((y^m)\) of degree one, where \(B^m_m \) is given by (19), provided that \(\Omega \neq 0 \).

Remark 3 [24]: If \(\alpha^2 \) contains \(\beta \) as a factor, then the dimension is equal to two and \(b^2 = 0 \). Throughout this paper, we assume that the dimension is more than two and \(b^2 \neq 0 \), that is, \(\alpha^2 \neq 0 (mod \beta) \).
Results and Discussions

Projectively Flat Finsler space with the metric $L = \alpha + \frac{\alpha^2}{\beta}$

Let F^n be a Finsler space with an (α, β)-metric is given by

$$L = \alpha + \frac{\alpha^2}{\beta}. \tag{21}$$

The partial derivatives with respect to α and β of (21) are given by

$$L_\alpha = \frac{2\alpha + \beta}{\beta}, \quad L_\beta = -\frac{\alpha^2}{\beta^2},$$

$$L_{\alpha\alpha} = \frac{2}{\beta}, \quad L_{\beta\beta} = \frac{2\alpha^2}{\beta^3}. \tag{22}$$

If $1 + (L_{\beta\beta}/\alpha L_\alpha)(\alpha^2 \beta^2 - \beta^2) = 0$, then we have $\{2b^2 \alpha^3 + \beta^3\} = 0$ which leads a contradiction. Thus $1 + (L_{\beta\beta}/\alpha L_\alpha)(\alpha^2 \beta^2 - \beta^2) \neq 0$ and hence theorem (1) can be applied.

Substituting (22) into (4), we get

$$\begin{align*}
(2b^2 \alpha^3 &+ \beta^3)(2\alpha \beta + \beta^2)(\alpha^2 \gamma_{00} - \gamma_{000} y^i) - 2\alpha^5 s_i^j \\
&+ 2\alpha^3 (2\alpha \beta + \beta^2) r_{00} + 2\alpha^3 s_0 (\alpha^2 b^i - \beta y^i) = 0. \tag{23}
\end{align*}$$

The terms of (23) can be written as,

$$p_8 \alpha^8 + p_6 \alpha^6 + p_4 \alpha^4 + p_2 \alpha^2 + p_0 + \alpha \{p_5 \alpha^4 + p_3 \alpha^2 + p_1\} = 0. \tag{24}$$

where

$$\begin{align*}
p_8 &= 4\{s_0 b^i - s_0^i b^2\}, \\
p_6 &= 4b^2 \beta \gamma_{00} + 4\beta b^i r_{00} - 4 \beta s_0 y^i, \\
p_5 &= 2b^2 \beta^2 \gamma_{00} - 2\alpha^5 \beta^3 s_i^j + 2b^2 r_{00} b^i, \\
p_4 &= -4b^2 \beta \gamma_{0000} y^i - 4 \beta^2 r_{00} y^i, \\
p_3 &= 2\beta^4 \gamma_{00} - 2b^2 \beta^2 \gamma_{0000} y^i - 2\beta^3 r_{00} y^i, \\
p_2 &= \beta^5 \gamma_{00}, \\
p_1 &= -2\beta^4 \gamma_{0000} y^i, \\
p_0 &= -\beta^5 \gamma_{0000} y^i.
\end{align*}$$

Since $(p_8 \alpha^8 + p_6 \alpha^6 + p_4 \alpha^4 + p_2 \alpha^2 + p_0)$ and $(p_5 \alpha^4 + p_3 \alpha^2 + p_1)$ are rational and α is irrational in (y^i), we have

$$p_8 \alpha^8 + p_6 \alpha^6 + p_4 \alpha^4 + p_2 \alpha^2 + p_0 = 0, \tag{25}$$

$$p_5 \alpha^4 + p_3 \alpha^2 + p_1 = 0. \tag{26}$$

The term which does not contain β in (25) is $p_8 \alpha^8$. Therefore there exist a homogeneous polynomial v_7 of degree seven in (y^i) such that

$$4\{s_0 b^i - s_0^i b^2\} \alpha^8 = \beta v_7^i. \tag{27}$$

Since $\alpha^2 \neq 0(\mod \beta)$, we have a function $u^i = u^i(x)$ satisfying

$$\{s_0 b^i - s_0^i b^2\} = \beta u^i.$$
Contracting the above by y_i, we have $s_0 = u^i y_i$, so that $u_i = s_i$. Therefore, we have $b^2 s_0 = s_0 b^i - s^i b$, i.e.,

$$b^2 s_{ij} = b_i s_j - b_j s_i.$$ \(\text{(28)}\)

Again, from (26), we observe that the terms $-2b^4 \gamma_0 y^i$ must have a factor α^2. Therefore, there exist a 1-form $v_0 = v_i(x) y^i$, such that

$$\gamma_{00} = v_0 \alpha^2.$$ \(\text{(29)}\)

From (25) and (29), the term $\beta^3(\gamma_{00} - v_0 y^i)$ must have a factor α^2. Hence we have a $\mu^i = \mu^i(x)$ satisfying

$$\gamma_{00} - v_0 y^i = \mu^i \alpha^2.$$ \(\text{(30)}\)

Contracting (30) by y_i, we have from (29), $\mu^i y_i = 0$, which implies $\mu^i = 0$. Then we get

$$\gamma_{00} = v_0 y^i.$$ \(\text{(31)}\)

implies

$$2\gamma_{jk} = v_k \delta^i_j + v_j \delta^i_k, \quad \text{(32)}$$

which shows that associated Riemannian space (M^n, α) is projectively flat.

Again plugging (29) and (31) in to (23), we have

$$-2(2b^2 \alpha^3 + \beta^3) \alpha s_0^i + 2\alpha^3 \{2(2\alpha \beta + \beta^2) r_{00} + 2\alpha^2 s_0\}(\alpha^2 b^i - \beta y^i) = 0.$$ \(\text{(33)}\)

Contracting the above by b_i, we get

$$4\{(b^2 \alpha^2 - \beta^2) r_{00} - \alpha^2 \beta s_0\} \alpha + \{2\beta(\alpha^2 b^2 - \beta^2) r_{00} - 2\alpha^2 \beta^2 s_0\} = 0.$$ \(\text{(34)}\)

which implies

$$2(\alpha^2 b^2 - \beta^2) r_{00} - 2\alpha^2 \beta s_0 = 0.$$ \(\text{(35)}\)

Above equation can be written as

$$2\alpha^2(b^2 r_{00} - \beta s_0) - 2\beta^2 r_{00} = 0.$$ \(\text{(36)}\)

Therefore there exist a function $k = k(x)$, such that

$$- r_{00} = k \alpha^2 \text{ and } b^2 r_{00} - s_0 \beta = k \beta^2.$$ \(\text{(37)}\)

Eliminating r_{00} from (37), we have

$$s_0 \beta = k(\beta^2 - \alpha^2 b^2),$$ \(\text{(38)}\)

implies

$$(s_i b_j + s_j b_i) = 2k(b_i b_j - b^2 a_{ij}),$$ \(\text{(39)}\)

which leads to $k = 0$. From equation (38), $s_0 = 0$ and From (37), $r_{00} = 0$.

Since $s_0 = 0$, (28) implies $s_{ij} = 0$. So $r_{00} = 0$ and $s_{00} = 0$ implies $b_{ij} = 0$.

Conversely, if $b_{ij} = 0$, then we have $r_{00} = s_0^i = s_0 = 0$. So (23) is a consequence of (31). Thus we state that,

Theorem 4. A Finsler space F^n with an (α, β)-metric $L(\alpha, \beta)$ given by (21) is projectively flat, if and only if we have $b_{ij} = 0$ and the associated Riemannian space (M^n, α) is projectively flat.
Projective Flat Finsler space with \((\alpha, \beta)\)-metric of Douglas type:
In this section, we study the condition for a Finsler space \(F^n\) with a special \((\alpha, \beta)\)-metric

\[
L = \alpha + \frac{\alpha^2}{\beta}
\]

(40)

is of Douglas type. The partial derivatives of (40) with respect to \(\alpha\) and \(\beta\) are as follows:

\[
L_{\alpha} = 1 + 2\frac{\alpha}{\beta}, \quad L_{\alpha\alpha} = 2, \quad L_{\beta} = -\frac{\alpha^2}{\beta^2}.
\]

(41)

Plugging (41) in (6), we have

\[
(2\alpha\beta + \beta^2)(2b^2\alpha^3 + \beta^3)B^{ij} + \alpha^3(2b^2\alpha^3 + \beta^3)(s^i_0 y^j_i - s^i_0 y^j_i) \\
- \alpha^3\{r_{00}(2\alpha\beta + \beta^2) + 2\alpha^3 s_0\}(b^i y^j_i - b^i y^j_i) = 0.
\]

(42)

Suppose that \(F^n\) is a Douglas space, then \(B^{ij}\) are homogeneous polynomial in \((y^i)\) of degree 3. Separating the rational and irrational terms of \((y^i)\) in (42), which yields

\[
(4\alpha^4\beta^2 + \beta^5)B^{ij} + 2b^2\alpha^6(s^i_0 y^j_i - s^i_0 y^j_i) - 2\alpha^4\beta r_{00}(b^i y^j_i - b^i y^j_i) - 2\alpha^6 s_0 (b^i y^j_i - b^i y^j_i) \\
+ \alpha(2b^2\alpha^2 \beta^2 + \beta^4)B^{ij} + \alpha^2\beta^3(s^i_0 y^j_i - s^i_0 y^j_i) - \alpha^2\beta^2 r_{00}(b^i y^j_i - b^i y^j_i) = 0.
\]

(43)

which yields two equations as follows:

\[
(4\alpha^4\beta^2 + \beta^5)B^{ij} + 2b^2\alpha^6(s^i_0 y^j_i - s^i_0 y^j_i) - 2\alpha^4\beta r_{00}(b^i y^j_i - b^i y^j_i) \\
- 2\alpha^6 s_0 (b^i y^j_i - b^i y^j_i) = 0,
\]

(44)

\[
(2b^2\alpha^2 \beta^2 + \beta^4)B^{ij} + \alpha^2\beta^3(s^i_0 y^j_i - s^i_0 y^j_i) - \alpha^2\beta^2 r_{00}(b^i y^j_i - b^i y^j_i) = 0.
\]

(45)

Eliminating \(B^{ij}\) from (44) and (45), we have

\[
P(s^i_0 y^j_i - s^i_0 y^j_i) + Q(b^i y^j_i - b^i y^j_i) = 0.
\]

(46)

where

\[
P = (4b^4\alpha^6 + \beta^6), \quad Q = \{(-4\alpha^2\beta^2 + \beta^5)r_{00} - (4\alpha^6 b^2 + 4\alpha^4 \beta^2)s_0\}.
\]

(47)

(48)

Contracting (46) by \(b_i y_j\) leads to

\[
P s_0\alpha^2 + Q(b^2\alpha^2 - \beta^2) = 0.
\]

(49)

The term of (49) which seemingly does not contain \(\alpha^2\) is \(-\beta^7 r_{00}\). Hence there exist a \(h p(7) v_7\), such that

\[
\beta^7 r_{00} = \alpha^2 v_7.
\]

(50)

Now let us discuss the following two cases.

(i) \(v_7 = 0\),

(ii) \(v_7 \neq 0; \quad \alpha^2 \neq 0(mod\beta)\)

Case(i): \(v_7 = 0\).

In this case, \(r_{00} = 0\) and (49) is reduced to

\[
s_0\{P + Q_1(b^2\alpha^2 - \beta^2)\} = 0.
\]

(51)

where

\[
Q_1 = -(4\alpha^4 b^2 + 4\alpha^2 \beta^2).
\]

(52)
If \(P + Q_1(b_2^2 - \beta^2) = 0 \) in (51), then the term of (51) which does not contain \(\alpha \) is \(\beta^6 \). Therefore there exist \(h p(4)v_4 \), such that \(\beta^6 = \alpha^2 v_4 \). In this case, if \(\alpha^2 \neq 0(\text{mod} \beta) \), then we have \(v_4 = 0 \), which leads to contradiction. Therefore, \(\{ P + Q_1(b_2^2 - \beta^2) \} \neq 0 \). By discussing the above condition, From (51), we have \(s_0 = 0 \).

Plugging \(s_0 = 0 \) and \(r_{00} = 0 \) in (46), we have

\[
P(s_0^j y^i - s_0^i y^j) = 0. \tag{53}
\]

If \(P = 0 \), (47) implies,

\[
4b^4 \alpha^6 + \beta^6 = 0. \tag{54}
\]

The term of (54) which seemingly does not contain \(\alpha \) is \(\beta^6 \). Thus there exist \(h p(4)v_4 \), such that \(\beta^6 = \alpha^2 v_4 \). In this case, we have \(v_4 = 0 \), which leads to contradiction. Therefore \(P \neq 0 \). Thus we get from (53),

\[
(s_0^j y^i - s_0^i y^j) = 0. \tag{55}
\]

By contract the above by \(y_j \), we get \(s_0^i = 0 \) which implies \(r_{00} = s_{00} = 0 \). Finally we have \(b_{ij} = 0 \).

Case(ii): \(v_r \neq 0; \alpha^2 \neq 0(\text{mod} \beta) \).

From (50), there exists a function \(h = h(x) \) such that

\[
r_{00} = h \alpha^2. \tag{56}
\]

Plugging (56) in (49), we have

\[
A s_0 + ((-4 \alpha^2 \beta^3 + \beta^5) h - (4 \alpha^4 \beta^2 + 4 \alpha^2 \beta^2 s_0)(\alpha^2 b^2 - \beta^2)) = 0. \tag{57}
\]

In (57), the terms not containing \(\alpha \) are \(\beta^6 s_0 - \beta^7 h \). Therefore, there exists a \(h p(5)v_5 \), such that \(\beta^6 s_0 - \beta^7 h = \alpha^2 v_5 \). Since \(\alpha^2 \neq 0(\text{mod} \beta) \), we have \(v_5 = 0 \). Thus

\[
(s_0 - \beta h) = 0, \tag{58}
\]

which implies \(s_i - h b_i = 0 \). By contracting this by \(b^i \), we get \(b^2 = 0 \).

From (49) and (58),

\[
\alpha^4 \beta^4 h - 4 \alpha^2 h + \beta^2 h + 4 \alpha^2 \beta^2 = 0. \tag{59}
\]

In (59), term not containing \(\beta \) is \(-4 \alpha^2 h \). Therefore, there exist a \(h p(1)u_1 \), such that \(-4 \alpha^2 h = \beta u_1 \). Since \(\alpha^2 \neq 0(\text{mod} \beta) \), implies \(u_1 = 0 \), which leads to contradiction. Thus we have \(h = 0 \). This implies \(s_0 = r_{00} = 0 \).

Thus, (46) becomes \(P(s_0^j y^i - s_0^i y^j) = 0 \). Since \(p \neq 0 \), we have \((s_0^j y^i - s_0^i y^j) = 0 \). By contract the above by \(y_j \), we get \(s_0^i = 0 \) which implies \(r_{00} = s_{00} = 0 \). Finally we have \(b_{ij} = 0 \).

Conversely, if \(b_{ij} = 0 \), then we obtain \(B^{ij} = 0 \) from (6). Hence \(F^n \) is Douglas space. Thus we state the that:

Theorem 5. An \(n \)-dimensional Finsler space \(F^n \) with the \((\alpha, \beta)\)-metric \(L = \alpha + \frac{\alpha^2}{\beta} \) is a Douglas space if and only if \(b_{ij} = 0 \).

Weakly-Berwald Finsler Space with the metric \(L = \alpha + \frac{\alpha^2}{\beta} \): Let us consider the \((\alpha, \beta)\)-metric

\[
L = \alpha + \frac{\alpha^2}{\beta}. \tag{60}
\]

For a Finsler space \(F^n \) with (60), the partial derivatives with respect to \(\alpha \) and \(\beta \) are as follows:

\[
L_\alpha = \frac{2\alpha}{\beta}, \quad L_{a\alpha} = \frac{2}{\beta},
\]

\[
L_{aa} = 0, \quad L_\beta = -\frac{\alpha^2}{\beta^2}. \tag{61}
\]
Plugging (61) in \(B^m \), we have
\[
B^m = -\alpha \left((2\alpha + \beta)\beta r_{00} + 2\alpha^3 s_0 \right) \left[\frac{1}{2(\alpha + \beta)} + 1 \right] y^m - \frac{\alpha^2 b^m}{\beta} - \frac{\alpha^3}{\beta(2\alpha + \beta)} s_0^m. \tag{62}
\]

And plugging (61) into (9), (17) and (20) in respective quantities, we have
\[
A = \frac{(n + 1)\alpha\beta^4(2\alpha + \beta) - \alpha(\alpha^2 b^2 - \beta^2)(\alpha\beta + \alpha^2)(4\alpha + 4\beta)}{\beta^3},
\]
\[
B = \frac{2\alpha^2(\alpha^2 + \alpha\beta)}{\beta^2},
\]
\[
C = \frac{b^2\alpha^2 - \beta^2}{\beta} \{4b^2\alpha^4 + \alpha^3\beta(4b^2 - 4) - \beta^4 \},
\]
\[
D = \frac{2\alpha}{\beta^2} \{-3\alpha^2\beta^2(\alpha^2 b^2 - 2\beta^2)(2\alpha + \beta) + 4\alpha^3(\alpha^4 b^4 - \beta^4) - 4\alpha^3(\alpha^2 b^2 - \beta^2)^2 \},
\]
\[
E = \frac{2\alpha^2(2\alpha + \beta)(2\alpha^3 b^2 + \beta^2)},
\]
\[
\Omega = \frac{2\alpha^3 b^2 + \beta^3}{\beta},
\]
\[
C^* = \frac{\alpha\{(2\alpha + \beta)\beta r_{00} + 2\alpha^3 s_0 \}}{2\{2\alpha^3 b^2 + \beta^3 \}}. \tag{63}
\]

Plugging (63) into (19), we get
\[
\{64b^2\alpha^{10}\beta^3 + 40b^2\alpha^8 \beta^5 + 40b^2\alpha^6 \beta^7 + 16\alpha^4 \beta^9 + 2\alpha^2 \beta^{11} + 32b^2\alpha^{11} \beta^2 + 40b^2\alpha^9 \beta^4 + 64b^2\alpha^7 \beta^6 \\
+ (8b^2 + 8)\alpha^5 \beta^8 + 10\alpha^3 \beta^{10} \} B^m + \{-44b^4 + 64b^2\alpha^2 \beta^2 + (-8b^4 + 24b^2 - 16)\alpha^8 \beta^4 \\
+ (-8b^4 + 6b^2 - 8)\alpha^6 \beta^6 + (-4n - 28)\alpha^4 \beta^8 - (n + 1)\alpha^2 \beta^{10} + (-56b^4 + 80b^2)\alpha^9 \beta^3 \\
+ (-8b^2 + 16b^2 - 24)\alpha^7 \beta^5 + (-2nb^2 - 16)\alpha^5 \beta^7 - (n + 7)\alpha^3 \beta^9 \} r_{00} + \{-46b^2\alpha^{10} \beta^3 \\
- (4b^2 + 12b^2 + 28)\alpha^8 \beta^5 - (4n + 28)\alpha^6 \beta^7 - 32b^2\alpha^{11} \beta^2 - (8b^2 + 12b^2)\alpha^9 \beta^4 \\
- 68\alpha^7 \beta^6 - (4n - 3)\alpha^5 \beta^8 \} s_0 + \{-64b^2\alpha^{10} \beta^3 - (8b^2 + 16)\alpha^8 \beta^5 - 20\alpha^6 \beta^7 \\
- 32b^2\alpha^{11} \beta^2 - 40b^2\alpha^9 \beta^4 - 32\alpha^7 \beta^6 - 4\alpha^5 \beta^8 \} r_0 = 0. \tag{64}
\]

Now suppose that \(F^n \) is a weakly-Berwald space, that is, \(B^m_0 \) is a \(hp(1) \). Since \(\alpha \) is irrational in \((y')\), the equation (64) is divided into two equations as follows:
\[
\beta F_1 B^m_0 + G_1 r_{00} + \alpha^4 \beta H_1 s_0 + \alpha^4 \beta I_1 r_0 = 0, \tag{65}
\]
\[
F_2 B^m_0 + \beta G_2 r_{00} + \alpha^2 H_2 s_0 + \alpha^2 I_2 r_0 = 0, \tag{66}
\]
where
\[
F_1 = 64b^2\alpha^8 + 40b^2\alpha^6 \beta^2 + 40b^2\alpha^4 \beta^4 + 16\alpha^2 \beta^6 + 2\beta^8,
\]
\[
F_2 = 32b^2\alpha^8 + 40b^2\alpha^6 \beta^2 + 64b^2\alpha^4 \beta^4 + (8b^2 + 8)\alpha^2 \beta^6 + 10\beta^8,
\]
\[
G_1 = (-44b^4 + 64b^2)\alpha^8 + (-8b^4 + 24b^2 - 16)\alpha^6 \beta^2 + (-8b^2 + 6b^2 - 8)\alpha^4 \beta^4 \\
+ (4n - 28)\alpha^2 \beta^6 - (n + 1)\beta^8,
\]
\[
G_2 = (-56b^4 + 80b^2)\alpha^8 + (-8b^2 + 16b^2 - 24)\alpha^4 \beta^2 + (-2nb^2 - 16)\alpha^2 \beta^4 - (n + 7)\beta^6,
\]
\[
H_1 = -46b^2\alpha^8 - (4b^2 + 12b^2 + 28)\alpha^2 \beta^2 - (4n + 28)\beta^4,
\]
\[
H_2 = -32b^2\alpha^8 - (8b^2 + 12b^2)\alpha^4 \beta^2 - 68\alpha^6 \beta^4 - (4n - 3)\beta^6,
\]
\[
I_1 = -64b^2\alpha^4 - (8b^2 + 16)\alpha^2 \beta^2 - 20\beta^4,
\]
\[
I_2 = -32b^2\alpha^4 - 40b^2\alpha^2 \beta^2 - 32\alpha^2 \beta^4 - 4\beta^6.
\]
Eliminating B^m_m from the above equations (65) and (66), we have

$$R r_{00} + \alpha^2 \beta S s_0 + \alpha^2 \beta T r_0 = 0,$$

(67)

where

$$R = F_2 G_1 - \beta^2 F_1 G_2, \quad S = \alpha^2 F_2 H_1 - F_1 H_2, \quad T = \alpha^2 F_2 I_1 - F_1 I_2.$$

Since only the term $32b^2(-44b^4 + 64b^2)\alpha^1 r_{00}$ of $R r_{00}$ in (67) does not contain β, we must have $h p (17) v_{17}$, such that

$$\alpha^1 r_{00} = \beta V_{17}.$$

(68)

Let us consider $\alpha^2 \neq 0 (mod \beta)$ and $b^2 \neq 0$. The above equation (68) shows that the existence of the function V^1 satisfying $V_{17} = V^1 \alpha^1$, and hence $r_{00} = V^1 \beta$. Then (67) reduces to

$$R V^1 + \alpha^2 S s_0 + \alpha^2 T r_0 = 0.$$

(69)

Only the term $\{10(-n+1)\alpha^1 + 2(n+7)\beta^1\} V^1$ of the above (69) seemingly does not contain α^2, and hence we must have $h p (15) V_{15}$, such that $\{10(-n+1) + 2(n+7)\} \beta^1 V^1 = \alpha^2 V_{15}$.

Since $\alpha^2 \neq 0 (mod \beta)$, we have $V_{15} = 0$, $V^1 = 0$. Hence we obtain $r_{00} = 0$; $r_{ij} = 0$; $r_0 = 0$; $r_j = 0$. Substituting $V^1 = 0$, $r_0 = 0$ in (69) we get $S s_0 = 0 \Rightarrow s_0 = 0$ [since $S \neq 0$].

Conversely, substituting $r_{00} = 0$, $s_0 = 0$ and $r_0 = 0$ into (64), we have $B^m_m = 0$. i.e., the Finsler space with the metric (60) is a weakly-Berwald space.

Further, we suppose that the Finsler space with (60) be a Berwald space. Then we have $r_{00} = 0$, $s_0 = 0$ and $r_0 = 0$. Because the space is a weakly-Berwald space from the above discussion. Substituting the above into (62), we have $B^m_m = 0$ i.e., the Finsler space with (60) is a Berwald space. Hence $s_{ij} = 0$ hold good.

Theorem 6. A Finsler space with the metric (60) is Weakly-Berwald space if and only if $r_{ij} = 0$ and $s_j = 0$.

And also a Finsler space with the metric (60) is Berwald space if and only if $r_{ij} = 0$ and $s_j = 0$.

Conclusion

The present investigation deals with the characterization of important class of projectively flat Finsler (α, β)-metric in the form of $L = \alpha + \frac{\alpha^2}{\beta}$, where α is Riemannian metric and β-is differential 1-form. Also the condition for Finsler space F^n with the (α, β)-metric of Douglas type is described. Further, the necessary and sufficient condition for Finsler space with (α, β)-metric to become a Berwald space and Weakly-Berwald space is investigated. In this regard we obtained the following conclusions:

1. A Finsler space F^n with an (α, β)-metric $L = \alpha + \frac{\alpha^2}{\beta}$ is projectively flat if and only if we have $b_{ij} = 0$ and the associated Riemannian space (M^n, α) is projectively flat.

2. A Finsler space F^n with an (α, β)-metric $L = \alpha + \frac{\alpha^2}{\beta}$ is a Douglas space flat if and only if $b_{ij} = 0$.

3. A Finsler space F^n with an (α, β)-metric $L = \alpha + \frac{\alpha^2}{\beta}$ is a Weakly-Berwald space if and only if $r_{ij} = 0$ and $s_j = 0$.
References

