Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

IJPMS > Volume 17 > Finite Metabelian Group Algebras
< Back to Volume

Finite Metabelian Group Algebras

Full Text PDF

Abstract:

Given a finite metabelian group G, whose central quotient is abelian (not cyclic) group of order p2, p odd prime, the objective of this paper is to obtain a complete algebraic structure of semisimple group algebra Fq[G] in terms of primitive central idempotents, Wedderburn decomposition and the automorphism group.

Info:

Periodical:
International Journal of Pure Mathematical Sciences (Volume 17)
Pages:
30-38
Citation:
S. Gupta "Finite Metabelian Group Algebras", International Journal of Pure Mathematical Sciences, Vol. 17, pp. 30-38, 2016
Online since:
Oct 2016
Authors:
Export:
Distribution:
References:

[1] G.K. Bakshi, S. Gupta, I.B.S. Passi, Semisimple metacyclic group algebras, Proc. Indian Acad. Sci. (Math Sci. ). 121(4) (2011) 379-396.

DOI: https://doi.org/10.1007/s12044-011-0045-4

[2] G.K. Bakshi, S. Gupta, I.B.S. Passi, The structure of finite Semisimple metacyclic group algebras, J. Ramanujan Math Soc. 28(2) (2013) 141-158.

[3] G.K. Bakshi, S. Gupta, I.B.S. Passi, The algebraic structure of Finite metabelian group algebras, Comm. Algebra. 43(6) (2015) 2240-2257.

DOI: https://doi.org/10.1080/00927872.2014.888566

[4] G.K. Bakshi, R.S. Kullkarni, I.B.S. Passi, The rational group algebra of a finite group, J. Alg. Appl. 12(3) (2013).

[5] O. Broche, Á. del Río, Wedderburn decomposition of finite group Algebras, Finite Fields Appl. 13(1) (2007) 71-79.

DOI: https://doi.org/10.1016/j.ffa.2005.08.002

[6] M.G. Cornelissen, P.C. Milies, Finitely generated groups G such that , Comm. Algebra. 42(1) (2014) 378-388.

[7] E. Jespers, G. Leal, A. Paques, Central idempotents in the rational group algebra of a finite nilpotent group, J. Algebra Appl. 2(1) (2003) 57-62.

[8] A. Olivieri, Á. del Río, J.J. Simón, The group of automorphisms of the rational group algebra of a finite metacyclic group, Comm. Algebra. 34(10) (2006) 3543-3567.

[9] A. Olivieri, Á. del Río, J.J. Simón, On monomial characters and Central idempotents of rational group algebras, Comm. Algebra. 32(4) (2004) 1531-1550.

Show More Hide