This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] G.K. Bakshi, S. Gupta, I.B.S. Passi, Semisimple metacyclic group algebras, Proc. Indian Acad. Sci. (Math Sci. ). 121(4) (2011) 379-396.
DOI: https://doi.org/10.1007/s12044-011-0045-4[2] G.K. Bakshi, S. Gupta, I.B.S. Passi, The structure of finite Semisimple metacyclic group algebras, J. Ramanujan Math Soc. 28(2) (2013) 141-158.
[3] G.K. Bakshi, S. Gupta, I.B.S. Passi, The algebraic structure of Finite metabelian group algebras, Comm. Algebra. 43(6) (2015) 2240-2257.
DOI: https://doi.org/10.1080/00927872.2014.888566[4] G.K. Bakshi, R.S. Kullkarni, I.B.S. Passi, The rational group algebra of a finite group, J. Alg. Appl. 12(3) (2013).
[5] O. Broche, Á. del Río, Wedderburn decomposition of finite group Algebras, Finite Fields Appl. 13(1) (2007) 71-79.
DOI: https://doi.org/10.1016/j.ffa.2005.08.002[6] M.G. Cornelissen, P.C. Milies, Finitely generated groups G such that , Comm. Algebra. 42(1) (2014) 378-388.
[7] E. Jespers, G. Leal, A. Paques, Central idempotents in the rational group algebra of a finite nilpotent group, J. Algebra Appl. 2(1) (2003) 57-62.
[8] A. Olivieri, Á. del Río, J.J. Simón, The group of automorphisms of the rational group algebra of a finite metacyclic group, Comm. Algebra. 34(10) (2006) 3543-3567.
[9] A. Olivieri, Á. del Río, J.J. Simón, On monomial characters and Central idempotents of rational group algebras, Comm. Algebra. 32(4) (2004) 1531-1550.
[1] P. KUMAR, P. DEVİ, "Minimum distance and idempotent generators of minimal cyclic codes of length ${p_1}^{\alpha_1}{p_2}^{\alpha_2}{p_3}^{\alpha_3}$", Journal of Algebra Combinatorics Discrete Structures and Applications, p. 167, 2021
DOI: https://doi.org/10.13069/jacodesmath.1000837[2] S. Gupta, J. Kaur, "Structure of some finite semisimple group algebras", DIDACTIC TRANSFER OF PHYSICS KNOWLEDGE THROUGH DISTANCE EDUCATION: DIDFYZ 2021, Vol. 2458, p. 120004, 2022
DOI: https://doi.org/10.1063/5.0080606