Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

IJPMS > Volume 17 > Fuzzy Bicontinuous Maps in Fuzzy Biclosure Spaces
< Back to Volume

Fuzzy Bicontinuous Maps in Fuzzy Biclosure Spaces

Full Text PDF

Abstract:

The purpose of this paper is to introduce the notion of fuzzy bicontinuous maps and fuzzy biclosed (fuzzy biopen) maps in fuzzy biclosure spaces and study some of their properties.

Info:

Periodical:
International Journal of Pure Mathematical Sciences (Volume 17)
Pages:
1-7
Citation:
R. Navalakhe and U.D. Tapi, "Fuzzy Bicontinuous Maps in Fuzzy Biclosure Spaces", International Journal of Pure Mathematical Sciences, Vol. 17, pp. 1-7, 2016
Online since:
October 2016
Export:
Distribution:
References:

[1] L.A. Zadeh, Fuzzy sets, Information and Control. 8(3) (1965) 338-353.

[2] C.L. Chang, Fuzzy Topological Spaces, Journal of Mathematical Analysis and Applications. 24(1) (1968) 182-190.

[3] S. Du et al., Fuzzy description of topological relations I : a unified 9-intersection model, In International Conference on Natural Computation. Springer Berlin Heidelberg, (2005).

[4] M.J. Egenhofer, R.D. Franzosa, Point-set topological spatial relations, International Journal of Geographical Information System. 5(2) (1991) 161-74.

DOI: https://doi.org/10.1080/02693799108927841

[5] E. Cech, Topological Spaces, Interscience Publishers, John Wiley and Sons, New York, (1996).

[6] A.S. Mashhour, M.H. Ghanim, Fuzzy closure spaces, Journal of Mathematical Analysis and Applications. 106(1) (1985) 154-170.

DOI: https://doi.org/10.1016/0022-247x(85)90138-6

[7] C. Boonpok, Hausdorff biclosure spaces, Int. J. Contemp. Math Sciences. 5(8) (2010) 359-363.

[8] U.D. Tapi, R. Navalakhe, Fuzzy Biclosure Spaces, Int. Journal of Math. Analysis. 5(16) (2011) 789-795.

[9] C. Boonpok, Bicontinuous maps in biclosure spaces, Int. J. Contemp. Math Sciences. 5(2) (2010) 51-59.

[10] R. Navalakhe, U.D. Tapi, Pairwise Fuzzy Bicontinuous maps in Fuzzy biclosure spaces, Annals of Pure and Applied Mathematics. 9(2) (2015) 151-156.

DOI: https://doi.org/10.18052/www.scipress.com/ijpms.17.1
Show More Hide
Cited By:

[1] R. Navalakhe, U. Tapi, "Fuzzy Bicontinuous Maps in Fuzzy Biclosure Spaces", International Journal of Pure Mathematical Sciences, Vol. 17, p. 1, 2016

DOI: https://doi.org/10.18052/www.scipress.com/IJPMS.17.1