ON THE NEGATIVE PELL EQUATION $y^2 = 45x^2 - 11$

M.A.Gopalan1, S.Vidhyalakshmi2, V.Pandichelvi3, P.Sivakamasundari4, C.Priyadharsini5

1,2Professor, Dept. of Mathematics, SIGC, Trichy, email: mayilgopalan@gmail.com, vidhyasigc@gmail.com
3Asst.Professor, Dept. of Mathematics, UDC, Trichy, email: bbasmahesh@gmail.com
4Guest Lecturer, Dept. of Mathematics, BDUCC, Lalgudi, Trichy, email: kaneeska.s@gmail.com
5M.Phil Scholar, Dept. of Mathematics, SIGC, Trichy, email: priyamat16@gmail.com

KEYWORDS: Binary quadratic, hyperbola, parabola, integral solutions, pell equation.

ABSTRACT: The binary quadratic equation represented by the negative pellian $y^2 = 45x^2 - 11$ is analyzed for its distinct integer solutions. A few interesting relations among the solutions are also given. Further, employing the solutions of the above hyperbola, we have obtained solutions of other choices of hyperbolas, parabolas and special Pythagorean triangle.

INTRODUCTION:

Diophantine equation of the form $y^2 = Dx^2 + 1$, where D is a given positive square-free integer is known as pell equation and is one of the oldest Diophantine equation that has interesting mathematicians all over the world, since antiquity, J.L.Lagrange proved that the positive Pell equation $y^2 = Dx^2 + 1$ has infinitely many distinct integer solutions whereas the negative pell equation $y^2 = Dx^2 - 1$ does not always have a solution. In [1], an elementary proof of a criterion for the solvability of the pell equation $x^2 - Dy^2 = -1$ where D is any positive non-square integer has been presented by R.A.Mollin and Anitha Srinivasan. For examples the equations $y^2 = 3x^2 - 1, y^2 = 7x^2 - 4$ have no integer solutions whereas $y^2 = 65x^2 - 1, y^2 = 202x^2 - 1$ have integer solutions. In this context, one may refer [2] E.E.Whitford, [3] S. Ahmet Tekcan et al., [4] Ahmet Tekcan, [5] Merve Guney, [6] V.Sangeetha et al., [7,8,11,12,13] M.A.Gopalan, [9,10] K.Meena et al.,}. More specifically, one may refer “The On-line Encyclopedia of integer sequences” (A031396, A130226, A031398) for values of D for which the negative pell equation $y^2 = Dx^2 - 1$ is solvable or not. In this communication, the negative Pell equation given by $y^2 = 45x^2 - 11$ is considered and infinitely many integer solutions are obtained. A few interesting relations among the solutions are presented.

METHOD OF ANALYSIS:

The negative pell equation representing hyperbola under consideration is

$$y^2 = 45x^2 - 11$$

whose smallest positive integer solution is $x_0 = 2, y_0 = 13$.

To obtain the other solutions of (1), consider the pell equation $y^2 = 45x^2 + 1$

whose general solution $(\tilde{x}_n, \tilde{y}_n)$ [14] is given by

$$\tilde{x}_n = \frac{1}{2\sqrt{45}} g_n, \tilde{y}_n = \frac{1}{2} f_n$$
where, \(f_n = (161 + 24\sqrt{45})^{n+1} + (161 - 24\sqrt{45})^{n+1}; g_n = (161 + 24\sqrt{45})^{n+1} - (161 - 24\sqrt{45})^{n+1} \) (2,3)

Applying BrahmaGupta Lemma[16] between \((x_0, y_0)\) and \((\tilde{x}_n, \tilde{y}_n)\), the other integer solutions of (1) are given by

\[
90x_{n+1} = 90f_n + 13\sqrt{45}g_n
\]

\[
2y_{n+1} = 13f_n + 2\sqrt{45}g_n
\]

Some numerical examples of \(x\) \& \(y\) satisfying (1) are given in the table below

<table>
<thead>
<tr>
<th>(n)</th>
<th>(x_n)</th>
<th>(y_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>1</td>
<td>634</td>
<td>4253</td>
</tr>
<tr>
<td>2</td>
<td>204146</td>
<td>1369453</td>
</tr>
<tr>
<td>3</td>
<td>65734378</td>
<td>440959613</td>
</tr>
<tr>
<td>4</td>
<td>21166265570</td>
<td>141987625933</td>
</tr>
</tbody>
</table>

Observations:

From the above table, we observe some interesting relations among the solutions which are presented below

1) The x-values are even whereas the y-values are odd

2) The recurrence relations satisfied by the solutions of (1) are given by

\[
x_{n+3} - 322x_{n+2} + x_{n+1} = 0
\]

\[
y_{n+3} - 322y_{n+2} + y_{n+1} = 0
\]

3) \(x_{n+3} = 322x_{n+2} - x_{n+1}\)

4) \(24y_{n+1} = x_{n+2} - 161x_{n+1}\)

5) \(24y_{n+2} = 161x_{n+2} - x_{n+1}\)

6) \(24y_{n+3} = 51841x_{n+2} - 161x_{n+1}\)

7) \(51841x_{n+1} = x_{n+3} - 7728y_{n+1}\)

8) \(25920x_{n+2} = 3864y_{n+2} - 24y_{n+1}\)

9) \(25920x_{n+2} = 24y_{n+3} - 3864y_{n+2}\)

10) \(x_{n+2} = 161x_{n+3} - 24y_{n+3}\)

11) \(51840x_{n+2} = 24y_{n+3} - 24y_{n+1}\)
12) \(161x_{n+2} = x_{n+3} - 24y_{n+2} \)

13) \(51841x_{n+2} = 161x_{n+3} - 24y_{n+1} \)

14) \(25920x_{n+1} = 24y_{n+2} - 3864y_{n+1} \)

15) \(51841x_{n+2}^2 = 161x_{n+3}x_{n+2} - 24y_{n+1}x_{n+2} \)

16) \(51841x_{n+1}^2 = x_{n+1}x_{n+3} - 7728x_{n+1}y_{n+1} \)

17) \(24y_{n+1}x_{n+1} = 3864y_{n+2}x_{n+1} - 25920x_{n+1}x_{n+2} \)

18) \(3864y_{n+1}x_{n+2} = 24y_{n+2}x_{n+3} - 25920x_{n+1}x_{n+2} \)

19) \(\frac{180x_{2n+2} - 26y_{2n+2} + 22}{11} \) is a perfect square

Proof: Eliminating \(g_n \) between (4) and (5), we get

\[180x_{n+1} - 26y_{n+1} = 11f_n \] (8)

Similarly, Eliminating \(f_n \) between (4) and (5), we get

\[4\sqrt{45}y_{n+1} - 26\sqrt{45}x_{n+1} = 11g_n \] (9)

Replacing \(n \) by \(2n+1 \) in (8), It is seen that

\[180x_{2n+2} - 26y_{2n+2} = 11[f_n^2 - 2] \]

Therefore, \(\frac{180x_{2n+2} - 26y_{2n+2} + 22}{11} \) is a perfect square

Similarly, each of the following expressions is a perfect square

i) \(\frac{1369453x_{2n+2} - 13x_{2n+4} + 85008}{42504} \)

ii) \(\frac{1369453x_{2n+3} - 4253x_{2n+4} + 264}{132} \)

iii) \(\frac{57060x_{2n+2} - 26y_{2n+3} + 3542}{1771} \)

iv) \(\frac{18373140x_{2n+2} - 26y_{2n+4} + 1140502}{570251} \)

v) \(\frac{4253x_{2n+2} - 13x_{2n+3} + 264}{132} \)

vi) \(\frac{180x_{2n+3} - 8506y_{2n+2} + 3542}{1771} \)
viii) \[\frac{57060 x_{2n+2} - 8506 y_{2n+3} + 22}{11} \]
20) \[\frac{180 x_{3n+3} - 26 y_{3n+3} + 10626}{11} \] is a cubical integer

Proof:
Replacing \(n \) by \(3n+2 \) in (8), it is seen that \[\frac{180 x_{3n+3} - 26 y_{3n+3} + 10626}{11} \] is a cubical integer

REMARKABLE OBSERVATIONS:
I: It is seen that \(f_n^2 - g_n^2 = 4 \) \hspace{1cm} (10)
Define \(X = 180 x_{n+1} - 26 y_{n+1}, Y = 4 \sqrt{45} y_{n+1} - 26 \sqrt{45} x_{n+1} \)
Therefore, \(f_n = \frac{X}{11}, g_n = \frac{Y}{11} \)
Substituting the above values of \((f_n, g_n)\) in (10), we have \(X^2 - Y^2 = 484 \) which represents a hyperbola.

Similarly, employing linear combinations among the solutions of (1), one may generate integer solutions for other choices of hyperbolas which are presented in the table 1 below

<table>
<thead>
<tr>
<th>S.NO</th>
<th>HYPERBOLA</th>
<th>((X,Y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(X^2 - Y^2 = 7226360064)</td>
<td>(\left(\frac{1369453 x_{n+3} - 13 x_{n+3}, 90 x_{n+3} - 9186570 x_{n+1}}{\sqrt{45}} \right))</td>
</tr>
<tr>
<td>2</td>
<td>(X^2 - Y^2 = 484)</td>
<td>(\left(180 x_{n+1} - 26 y_{n+1}, \frac{180 y_{n+1} - 1170 x_{n+1}}{\sqrt{45}} \right))</td>
</tr>
<tr>
<td>3</td>
<td>(X^2 - Y^2 = 69696)</td>
<td>(\left(1369453 x_{n+3} - 4253 x_{n+3}, \frac{28530 x_{n+3} - 9186570 x_{n+2}}{\sqrt{45}} \right))</td>
</tr>
<tr>
<td>4</td>
<td>(X^2 - Y^2 = 1300744812004)</td>
<td>(\left(18373140 x_{n+1} - 26 y_{n+3}, \frac{180 y_{n+3} - 123250770 x_{n+1}}{\sqrt{45}} \right))</td>
</tr>
<tr>
<td>5</td>
<td>(X^2 - Y^2 = 12545764)</td>
<td>(\left(57060 x_{n+1} - 26 y_{n+2}, \frac{180 y_{n+3} - 382770 x_{n+2}}{\sqrt{45}} \right))</td>
</tr>
<tr>
<td>6</td>
<td>(X^2 - Y^2 = 69696)</td>
<td>(\left(4253 x_{n+2} - 13 x_{n+2}, \frac{90 x_{n+2} - 28530 x_{n+1}}{\sqrt{45}} \right))</td>
</tr>
<tr>
<td>S.NO</td>
<td>PARABOLA</td>
<td>((X,Y))</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>1</td>
<td>(Y^2 = 42504X - 7226360064)</td>
<td>((1369453x_{2n+2} - 13x_{2n+4} + 85008, \frac{90x_{n+3} - 9186570x_{n+1}}{\sqrt{45}}))</td>
</tr>
<tr>
<td>2</td>
<td>(Y^2 = 11X - 484)</td>
<td>((180x_{2n+2} - 26y_{2n+2} + 22, \frac{180y_{n+1} - 1170x_{n+1}}{\sqrt{45}}))</td>
</tr>
<tr>
<td>3</td>
<td>(Y^2 = 132X - 69696)</td>
<td>((1369453x_{2n+3} - 4253x_{2n+4} + 264, \frac{28503x_{n+3} - 9186570x_{n+2}}{\sqrt{45}}))</td>
</tr>
<tr>
<td>4</td>
<td>(Y^2 = 570251X - 1300744812004)</td>
<td>((18373140x_{2n+2} - 26y_{2n+4} + 1140502, \frac{180y_{n+3} - 123250770x_{n+1}}{\sqrt{45}}))</td>
</tr>
<tr>
<td>5</td>
<td>(Y^2 = 1771X - 12545764)</td>
<td>((57060x_{2n+2} - 26y_{2n+3} + 3542, \frac{180y_{n+3} - 382770x_{n+1}}{\sqrt{45}}))</td>
</tr>
<tr>
<td>6</td>
<td>(Y^2 = 132X - 69696)</td>
<td>((4253x_{2n+2} - 13x_{2n+3} + 264, \frac{90x_{n+2} - 28530x_{n+1}}{\sqrt{45}}))</td>
</tr>
<tr>
<td>7</td>
<td>(Y^2 = 1771X - 1254564)</td>
<td>((180x_{2n+3} - 8506y_{2n+2} + 3542, \frac{57060y_{n+1} - 1170x_{n+2}}{\sqrt{45}}))</td>
</tr>
<tr>
<td>8</td>
<td>(Y^2 = 11X - 484)</td>
<td>((57060x_{2n+3} - 8506y_{2n+3} + 22, \frac{57060y_{n+2} - 382770x_{n+2}}{\sqrt{45}}))</td>
</tr>
</tbody>
</table>
III. Let $p, q; p > q > 0$ be the generators of the Pythagorean triangle $T(\alpha, \beta, \gamma)$, where

$\alpha = 2pq, \beta = p^2 - q^2, \gamma = p^2 + q^2, p > q > 0$. Let A, P represent the area and perimeter of T respectively, where $A = pq(p^2 - q^2), P = 2p(p + q)$

Note that $\gamma - \beta = 2q^2; \gamma - \alpha = (p - q)^2$

Therefore, $2(\gamma - \alpha) = 45(\gamma - \beta) - 22$ \hspace{1cm} (11)

gives $(p - q)^2 = 45q^2 - 11$ \hspace{1cm} (12)

Comparing (12) with (1), we have $p = x_{n+1} + y_{n+1}, q = x_{n+1}$ \hspace{1cm} (13)

Thus, the Pythagorean triangle T with generators p, q given by (13) is such that

$2\alpha - 45\beta + 43\gamma = 22$

In a similar manner, the other relations for the Pythagorean triangle T are presented below.

a) $47\beta - 45\gamma - \frac{8A}{P} = -22$

b) $2\alpha - \frac{4A}{P} + \beta = (2x_{n+1} + y_{n+1})^2$

c) $\gamma - \frac{4A}{P} - \alpha + \beta = 2y_{n+1}^2$

d) $\frac{2A}{P} = x_{n+1}y_{n+1}$

Each of the following expressions is a nasty number [15]

1. $6\left(\beta - \frac{4A}{P}\right)$

2. $6\left(2\alpha - \frac{4A}{P} + \beta\right)$

3. $3\left(\gamma - \frac{4A}{P} - \alpha + \beta\right)$

CONCLUSION:

In this paper, we have presented infinitely many integer solutions for the hyperbola represented by the negative Pell equation $y^2 = 45x^2 - 11$. As the binary quadratic Diophantine equations are rich in variety, one may search for the other choices of negative Pell equations and determine their integer solutions along with suitable properties.
REFERENCES:

[5]. Merve Guney, “Solutions of the pell equations \(tbyx = \pm \), when \(N \in \{ \pm 1, \pm 4 \} \)”, Mathematica Aterna, Vol 2, no.7,2012, (629-638).

[9]. K.Meena, M.A.Gopalan, R.Karthika, On the negative pell equation \(y^2 = 10x^2 - 6 \), IJMRD, VOL 2(12), 2015, 390-392

[10]. K.Meena, M.A.Gopalan, E.Bhuvaneshwari, On the negative pell equation \(y^2 = 60x^2 - 15 \), Scholars Bulletin, VOL 1(11), 2015, 310-316

