Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

IJET > Volume 7 > Effect of Al-Doping on the Optical Properties of...
< Back to Volume

Effect of Al-Doping on the Optical Properties of ZnO Thin Film Prepared by Thermal Evaporation Technique

Full Text PDF


Aluminum doped ZnO (AZO) thin films doped has been prepared by thermal evaporation method onto glass substrates. The optical characterization has been studied by UV-Visible Spectrophotometer in the range (300-1100) nm. The transmittance increased with increasing Al-doping, while absorption decreases with increasing Al-doping content. The energy gap (Eg) values increased with increasing Al-doped in the ZnO:Al thin films. The refractive index, extinction coefficient, and real and imaginary dielectric constants obtained results show that doping content strongly affects the optical parameters of AZO thin films. Optical constants tend to decrease with increasing doping content.


International Journal of Engineering and Technologies (Volume 7)
M. Musaab Khudhr and K. H. Abass, "Effect of Al-Doping on the Optical Properties of ZnO Thin Film Prepared by Thermal Evaporation Technique", International Journal of Engineering and Technologies, Vol. 7, pp. 25-31, 2016
Online since:
May 2016

[1] Yu-lin Wang, Fabrication and Characterization of Zinc Oxide Light Emitting Diodes, Ph.D. Thesis, University of Florida (2009).

[2] H. Kumar Y. Dav, K. Sreenivas, and V. Guptaa, Influence of Post Deposition, Annealing on the Structural and Optical Properties of Mn doped ZnO Thin Films, Journal of Applied Physics, 99 (2006) p.083507.

[3] B. Kumar, T. Rao, Effect of Substrate Temperature on Structural Properties of Nanostructur Zinc Oxide Thin Films Prepared by Reactive DC Magnetron Sputtering, Digest Journal of Nanomaterials and Biostructures, 6(3) (2011) 1281-1287.

[4] K. Jang, H. Park, S. Jung, N. V. Duy, and Y. Kim, Optical and electrical properties of 2 wt. % Al2O3-doped ZnO films and characteristics of Al-doped ZnO thin-film transistors with ultra-thin gate insulators, Thin Solid Films, 518 (2010) 2808–2811.

[5] B. Y. Oh, M. C. Jeong, T. H. Moon, M. W. Lee, and J. M. Myoung, J. Appl. Phys. 99 (2006) 124505.

[6] K. Keis, E. Magnusson, H. Lindström, S. E. Lindquist, A. Hagfeldt, Sol. Energy Mater. Sol. Cells 73 (2002) 51.

[7] H. J. Lim, D. Yong, Y. J. Oha, Gas sensing properties of ZnO thin films prepared by microcontact printing, Sensor Actuator A, 125 (2006) 405–410.

[8] M. Miki-Yoshida, V. Collins-Martınez, P. Amezaga-Madrid, A. Aguilar-Elguezabal, Thin films of photocatalytic TiO2 and ZnO deposited inside a tubing by spray pyrolysis, Thin Solid Films 419 (2002) 60–64.

[9] K. G. Yim, M. Y. Cho, S. M. Jeon, M. S. Kim, and J. Y. Leem, J. Korean Phys. Soc., 58 (2011) 520.

[10] E. M. Kaidashev, M. Lorenz, H. Wenckstern, A. Rahm, H.C. Semmelhack, K.H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth, and M. Grundmann, Appl. Phys. Lett., 82(2003) 3901.

[11] P. F. Carcia, R. S. Mclean, M. H. Reilly, and G. Nunes, Appl. Phys. Lett 82 (2003) 1117.

[12] C. R. Gorla, N. W. Emanetoglu, S. Liang, W. E. Mayo, Y. Lu, M. Wraback, and H. Shen, J. Appl. Phys., 85 (1999) 2595.

[13] Y. S. Kim, C. J. An, S. K. Kim, J. Song, and C. S. Hwang, Bull. Korean Chem. Soc., 31 (2010) 2503.

[14] M. S. Kim, K. G. Yim, S. M. Jeon, D. Y. Lee, J. S. Kim, J. S. Kim, J. S. Son, J. Y. Leem, Jpn. J. Appl. Phys., 50 (2011) 035003.

[15] M. S. Kim, K. G. Yim, J. Y. Leem, S. Kim, G. Nam, D. Y. Kim, S. O. Kim, D. Y. Lee, J. S. Kim, and J. S. Kim, J. Korean Phys. Soc., 59 (2011) 346.

[16] D. C. Look, Mater. Sci. Eng. B 80 (2001) 383.

[17] E. M. Mkawi, K. Ibrahim, M. K. M. Ali, M. A. Farrukh and A. S. Mohamed, The effect of dopant concentration on properties of transparent conducting Al-doped ZnO thin films for efficient Cu2ZnSnS4 thin-film solar cells prepared by electrodeposition method, Appl. Nanosci 5 (2015).

[18] J. Jaffe and A. Zunger, Electronic Structure of the Ternary Pnictide Semiconductors ZnSiP2, ZnGeP2, ZnSnP2, ZnSiAs2, and MgSiP2, Physical Review, 28 (1984) 49, (1905) 1882.

[19] H. Kim and CM Gilmore, Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices, Appl Phys Lett 76 (2000) 259–261.

[20] C. Mujdat, I. Saliha and C. Yasemin, The effects of Al doping on the optical constants of ZnO thin films prepared by spray pyrolysis method, 19 (2008) 704–708.

[21] J. I. Pankove, Optical Process in Semiconductors, Dover Publishing, Inc., New York. (1971).

[22] A. Youssef, L. Abderrazak, H. Bouchaib, R. Abderraouf, T. Philippe, and S. Meryane, Structural, optical and electrical properties of ZnO: Al thin films for optoelectronic applications, Opt Quant Electron 46 (2014) 229–234.

[23] D. Bonnell, B. Huey and D. Carroll, In-Situ Measurement of Electric Fields at Individual Grain Boundaries in TiO2, Solid State Ionics, 75 (1995) 35.

[24] S. Bandyopadhyay, G. K. Paul, S. K. Sen, Sol. Energy Mater. Sol. C. 71 (2002) 103.

[25] S. W. Xue, X. T. Zu, W. G. Zheng, H. X. Deng, and X. Xiang, Physica B. 381 (2006) 209.

[26] M. Nnabuchi, Optical and Solid State Characterization of Optimized Manganese Sulphide Thin Films and Their Possible Applications in Solar Energy, The Pacific Journal of Science and Technology, 7 (1) (2006) 69-76.

[27] S. K. Min, G. Y. Kwang, Jeong-Sik Son, and Jae-Young Leem, Effects of Al Concentration on Structural and Optical Properties of Al-doped ZnO Thin Films, Bull. Korean Chem. Soc., 33 (4) (2012) 1235.

Show More Hide