This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] Polmear, I.J., StJohn, D., Nie, J.F. & Qian, M. (2017): Light Alloys: Metallurgy of the Light Metals, (Fifth ed.). Oxford: Butter-Worth Heinemann. p.108–131.
DOI: https://doi.org/10.1016/b978-0-08-099431-4.00001-4[2] Elliott, R. (1997): Eutectic Solidification Processing; Crystalline and Glassy Alloys. Oxford: Butterworths Monographs in Materials.
[3] Higgins, R.A. & Bolton, W. (2015). Materials for Engineers and Technicians, (Sixth ed.); Oxford: Routledge, p.31, 32, 57–67, 127–138, 235–249.
[4] Asensio-Lozano, J &.Voort, G.V. (2015). The Al-Si Phase Diagram. Tech-Notes, Volume 5, Issue 1, p.1–5, Published by Buehler, A Division of Illinois Tool Works Inc.
[5] Robles-Hernandez, F.C., Ramírez, J.M.H. & Mackay, R. (2017). Al–Si Alloys: Automotive, Aeronautical, and Aerospace Applications. Cham, Switzerland: Springer International Publishing AG. https://dx.doi.org/10.1007/978-3-319-58380-8.
DOI: https://doi.org/10.1007/978-3-319-58380-8_10[6] Okorafor, O.E. (2004): Expendable Polystrene Pattern Cast Process: A Revolution in Foundry Technology, Inaugural Lecture Series 7 of FUTO, Owerri: FUTO Press. p.80.
[7] Onyemaobi, O.O. (2002): Mineral Resources Exploitation, Processing and Utilization – A Sine Qua Non for Nigeria's Metallurgical Industrial Development, Inaugural Lecture Series 5 of FUTO, Owerri: FUTO Press. p.48.
[8] Cottrell, A.H. (1995): An Introduction to Metallurgy, (Second ed.). London: The Institute of Metals, pp.177-189.
[9] Reif W. & Muller K. (1998). Improvement of Mechanical Properties of Al-Si-Cast Alloys by Grain Refinement and Modification. In R. Ciach (ed.), Advanced Light Alloys and Composites Berlin: Kluwer Academic Publishers., p.263–275. https://dx.doi.org/10.1007/978-94-015-9068-6.
DOI: https://doi.org/10.1007/978-94-015-9068-6_34[10] Abbaschian, G.R. Abbaschian, L. & Reed-hill, R.E. (2009): Physical Metallurgy Principles, (Fourth ed.). Connecticut: Cengage Learning, p.437–445.
[11] Porter, D.A., Easterling, K.E. & Sherif, M.Y. (2009). Phase Transformations in Metals and Alloys, (Third ed.), Florida: Taylor & Francis Group, p.220–227.
[12] Liu, N., Kang, G. & Liu, Z. (2012). Effect of Compound Modification on Microstructure and Properties of High Silicon Aluminum Alloy. Advanced Materials Research Vols. 476-478 p.114–117. https://dx.doi.org/10.4028/www.scientific.net/AMR.476-478.114.
DOI: https://doi.org/10.4028/www.scientific.net/amr.476-478.114[13] Dang. B., Zhang, X., Chen, Y.Z., Chen, C.X., Wang, H.T. & Liu, F. (2016). Breaking through the strength–ductility trade-off dilemma in an Al-Si-based casting alloy. Nature Scientific Reports, 6:30874, p.1–10. https://dx.doi.org/10.1038/srep30874.
DOI: https://doi.org/10.1038/srep30874[14] Zhang, L.Y., Jiang, Y.H., Ma, Z., Shan, S.F., Jia, Y.Z., Fan, C.Z. & Wang, W.K. (2008). Effect of cooling rate on solidified microstructure and mechanical properties of aluminium-A356 alloy, Journal of Materials Processing Technology, 207: 107–111. https://dx.doi.org/10.1016/j.jmatprotec.2007.12.059.
DOI: https://doi.org/10.1016/j.jmatprotec.2007.12.059[15] Zhuo, L., Pang, S., Wang, H. & Zhang, T. (2010). Effect of cooling rate on microstructure and mechanical properties of rapidly solidified Al-based bulk alloys. Journal of Alloys and Compounds, 504S: S117–S122. https://dx.doi.org/10.1016/j.jallcom.2010.03.211.
DOI: https://doi.org/10.1016/j.jallcom.2010.03.211[16] Guzel, E., Yuksel, C., Bayrak, Y., Sen, O. & Ekerim, A. (2014). Effect of Section Thickness on the Microstructure and Hardness of Ductile Cast Iron. Metallography and Hardness Measurements, 56(4): 285–288. https://dx.doi.org/10.3139/120.110558.
DOI: https://doi.org/10.3139/120.110558[17] Sahu, S., Bhat, M.N., Kumar, A., Pratik, A. & Kumar, A. (2014). Effect of Section Thickness on the Microstructure and Hardness of Gray Cast Iron (A Simulation Study). International Journal of Engineering Research & Technology, 3(7): 35–40.
[18] Askeland, D.R. & Wright, W.J. (2016). The Science and Engineering of Materials, (Seventh ed.); Connecticut: Cengage Learning, p.305–330.
[19] ASTM International (2016). Standard Test Methods for Tension Testing of Metallic Materials: ASTM/E8E8M.37691. https://dx.doi.org/10.1520/E0008_E0008M-16A.
[20] Shabestari, S.G. & Malekan, M. (2005). Thermal analysis study of the effect of the cooling rate on the microstructure and solidification parameters of 319 aluminum alloy. Canadian Metallurgical Quarterly, 44 (3): 305–312. https://dx.doi.org/10.1179/cmq.2005.44.3.305.
DOI: https://doi.org/10.1179/cmq.2005.44.3.305[21] Singh, R.K. Telang, A. & Das, S. (2016). Microstructure and Mechanical Properties of Al-Si Alloy in As-cast and Heat-Treated Condition. American Journal of Engineering Research, 5(3):133–137.
[22] Suareza, M.A., Figueroab,I., Cruza, A. Hernandeza, A. & Chavez, J.F. (2012). Study of the Al-Si-X System by Different Cooling Rates and Heat Treatment. Materials Research. 15(5): 763–769. https://dx.doi.org/10.1590/S1516-14392012005000103.
[23] Thompson, S., Cockcroft, S.L. & Wells, M.A. (2004). Effect of cooling rate on solidification characteristics of aluminium alloy AA 5182. Materials Science and Technology, 20: 497–504. https://dx.doi.org/10.1179/026708304225012053.
DOI: https://doi.org/10.1179/026708304225012053[24] Tian, L., Guo, Y., Li, J., Xia, F., Liang, M. & Bai, Y. (2018). Effects of Solidification Cooling Rate on the Microstructure and Mechanical Properties of a Cast Al-Si-Cu-Mg-Ni Piston Alloy. MDPI Materials, 11, 1230; p.2–9. https://dx.doi.org/10.3390/ma11071230.
DOI: https://doi.org/10.3390/ma11071230[25] Han, S.Z., Choi, E., Park, H.W., Lim, S.H., Lee, J., Ahn, J.H., Hwang, N-M. & Kim, K. (2017). Simultaneous increase in strength and ductility by decreasing interface energy between Zn and Al phases in cast Al-Zn-Cu alloy. Nature Scientific Reports, 7: 12195, p.1–8. https://dx.doi.org/10.1038/s41598-017-12286-7.
DOI: https://doi.org/10.1038/s41598-017-12286-7[26] Rao, P.N., Kaurwar, A. Singha, D. & Jayaganthana, R. (2014). Enhancement in Strength and Ductility of Al-Mg-Si alloy by Cryo-rolling followed by Warm rolling. Procedia Engineering, 75 :123–128. https://dx.doi.org/10.1016/j.proeng.2013.11.027.
DOI: https://doi.org/10.1016/j.proeng.2013.11.027[27] Liu, F.C., Yang, Z.N., Zheng C.L. & Zhang, F.C. (2011). Simultaneously improving the strength and ductility of coarse-grained Hadfield steel with increasing strain rate. Scripta Materiala, 66: 431–434. https://dx.doi.org/10.1016/j.scriptamat.2011.12.005.
DOI: https://doi.org/10.1016/j.scriptamat.2011.12.005[28] Anilchandra, A.R., Arnberg, L., Bonollo, F., Fiorese, E. & Timelli, G. (2017). Evaluating the Tensile Properties of Aluminum Foundry Alloys through Reference Castings—A Review. MDPI Materials,10, 1011; p.1–12. https://dx.doi.org/10.3390/ma10091011.
DOI: https://doi.org/10.3390/ma10091011[29] Caceres, C.H., Svensson, L. & Taylor, J.A. (2003). Strength–Ductility Behaviour of Al-Si-Cu-Mg Casting Alloys in T6 Temper. International Journal of Cast Metals Research, 15:531–543. https://dx.doi.org/10.1080/13640461.2003.11819539.
DOI: https://doi.org/10.1080/13640461.2003.11819539