Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

IJET > Volume 16 > Analysis of Effect of Protective Coatings on the...
< Back to Volume

Analysis of Effect of Protective Coatings on the Rate of Corrosion in Reinforced Concrete Sewers Microscopic Study

Full Text PDF

Abstract:

Microbial induced corrosion (MIC) in reinforced concrete (RC) sewers are increasing in occurrence and severity which is leading to significant economic losses. Being able to prevent or significantly reduce the rate of MIC in RC sewers will be of great help in finding a suitable sustainable solution. This study has investigated the effect of MIC; sulphide corrosion, on RC sewers through analytical techniques; scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX). The aim was to create a sustainable solution; protective epoxy coating (PEC), that will be capable of preventing or significantly reducing the MIC in RC sewers. The PEC based solution was able to significantly reduce the MIC in RC sewers. Furthermore, the test results also outlined that even in the coated sample, crown corrosion was more as compared to the corrosion of the submerged portion of the sample.

Info:

Periodical:
International Journal of Engineering and Technologies (Volume 16)
Pages:
20-33
Citation:
A. Ali et al., "Analysis of Effect of Protective Coatings on the Rate of Corrosion in Reinforced Concrete Sewers Microscopic Study", International Journal of Engineering and Technologies, Vol. 16, pp. 20-33, 2019
Online since:
March 2019
Export:
Distribution:
References:

[1] Abraham, D. M., & Ali Gillani, S. (1999). Innovations in materials for sewer system rehabilitation. Tunnelling and Underground Space Technology, 14, 43–56. Available at: https://doi.org/https://doi.org/10.1016/S0886-7798(99)00003-6.

DOI: https://doi.org/10.1016/s0886-7798(99)00003-6

[2] Alexander, M. G., & Fourie, C. (2011). Performance of sewer pipe concrete mixtures with portland and calcium aluminate cements subject to mineral and biogenic acid attack. Materials and Structures, 44(1), 313–330. Available at: https://doi.org/10.1617/s11527-010-9629-1.

DOI: https://doi.org/10.1617/s11527-010-9629-1

[3] Apté, N., Manager, B., Slurry, S., & Pcyc, O. (2015). KNOW YOUR SEWER - CORROSION PROTECTION OF SEWER ASSETS Paper Presented by : Nitin Apté Author : Calix Ltd 9 th Annual WIOA NSW Water Industry Operations Conference and Exhibition KNOW YOUR SEWER- CORROSION PROTECTION OF SEWER, (129), 129–135. Available at: http://www.calix.com.au/files/Whitepaper%20-%20Know%20your%20sewer%20-%20Nitin_Apte.pdf.

[4] ASTM. (2010). Annual book of ASTM Standards. Standard Specification for Portland Cement (Vol. 0). Available at: http://gost-snip.su/download/astm_c_150_07_standard_specification_for_portland_cement.

[5] ASTM. (2015). Standard Guide for Using Scanning Electron Microscopy / X-Ray Spectrometry in. Astm, i, 1–9. Available at: https://doi.org/10.1520/E2809-13.2.

[6] ASTM C76-16, Standard Specification for Reinforced Concrete Culvert, Storm Drain, and Sewer Pipe, ASTM International, West Conshohocken, PA, 2016, www.astm.org. Available at: astm-c76.pdf. (n.d.).

DOI: https://doi.org/10.1520/c1818-15

[7] Auguet, O., Pijuan, M., Guasch-Balcells, H., Borrego, C. M., & Gutierrez, O. (2015). Implications of Downstream Nitrate Dosage in anaerobic sewers to control sulfide and methane emissions. Water Research, 68, 522–532. Available at: https://doi.org/https://doi.org/10.1016/j.watres.2014.09.034.

DOI: https://doi.org/10.1016/j.watres.2014.09.034

[8] Australasian Corrosion Association Inc., T., Melchers, R. E., & Bond, P. (2012). 49th annual conference of the Australasian Corrosion Association 2009 : Corrosion and Prevention 2009, Coffs Harbour, Australia, 15-19 November 2009. 49th Annual Conference of the Australasian Corrosion Association 2009: Corrosion and Prevention 2009. Australasian Corrosion Association. Retrieved from Available at: https://espace.library.uq.edu.au/view/UQ:203250#.Wm2tlQCs9ig.mendeley.

DOI: https://doi.org/10.1016/j.corsci.2009.06.020

[9] Chapter, B., Corrosion, M. I., Little, B. J., Lee, J. S., & Division, O. (2009). 20090814030 14. (Vol. 18). Available at: www.dtic.mil/get-tr-doc/pdf?AD=ADA503535.

[10] De Muynck, W., Cox, K., Belie, N. De, & Verstraete, W. (2008). Bacterial carbonate precipitation as an alternative surface treatment for concrete. Construction and Building Materials, 22(5), 875–885. Available at: https://doi.org/https://doi.org/10.1016/j.conbuildmat.2006.12.011.

DOI: https://doi.org/10.1016/j.conbuildmat.2006.12.011

[11] De Muynck, W., De Belie, N., & Verstraete, W. (2009). Effectiveness of admixtures, surface treatments and antimicrobial compounds against biogenic sulfuric acid corrosion of concrete. Cement and Concrete Composites, 31(3), 163–170. Available at: https://doi.org/https://doi.org/10.1016/j.cemconcomp.2008.12.004.

DOI: https://doi.org/10.1016/j.cemconcomp.2008.12.004

[12] Dong, Q., Shi, H., & Liu, Y. (2017). Microbial Character Related Sulfur Cycle under Dynamic Environmental Factors Based on the Microbial Population Analysis in Sewerage System . Frontiers in Microbiology . Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5306501.

DOI: https://doi.org/10.3389/fmicb.2017.00064

[13] E., H., M., N., E., A., & G., N. (2007). Effect of Mixture Design Parameters and Wetting-Drying Cycles on Resistance of Concrete to Sulfuric Acid Attack. Journal of Materials in Civil Engineering, 19(2), 155–163. Available at: https://doi.org/10.1061/(ASCE)0899-1561(2007)19:2(155).

DOI: https://doi.org/10.1061/(asce)0899-1561(2007)19:2(155)

[14] Fenner, R. A. (2000). Approaches to sewer maintenance: a review. Urban Water, 2(4), 343–356. Available at: https://doi.org/https://doi.org/10.1016/S1462-0758(00)00065-0.

DOI: https://doi.org/10.1016/s1462-0758(00)00065-0

[15] Firer, D., Friedler, E., & Lahav, O. (2008). Control of sulfide in sewer systems by dosage of iron salts: Comparison between theoretical and experimental results, and practical implications. Science of The Total Environment, 392(1), 145–156. Available at: https://doi.org/https://doi.org/10.1016/j.scitotenv.2007.11.008.

DOI: https://doi.org/10.1016/j.scitotenv.2007.11.008

[16] Fourie, C. W., & Alexander, M. G. (2009). Acid resistant concrete sewer pipes. In Proceedings of the International RILEM TC-211 PAE Final Conference (p.408–418). Available at: http://www.civil.uct.ac.za/usr/civeng/staff/pilate-publications.pdf.

[17] Gemert, A. B. and D. Van. (n.d.). Biogenic Sulphuric Acid Attack of Concrete Sewer Pipes: A Prediction of the Corrosion Rate. Special Publication, 200. Available at: https://doi.org/10.14359/10604.

[18] Grengg, C., Mittermayr, F., Ukrainczyk, N., Koraimann, G., Kienesberger, S., & Dietzel, M. (2018). Advances in concrete materials for sewer systems affected by microbial induced concrete corrosion: A review. Water Research, 134, 341–352. Available at: https://doi.org/https://doi.org/10.1016/j.watres.2018.01.043.

DOI: https://doi.org/10.1016/j.watres.2018.01.043

[19] Guan, W. S. (2003). Advanced 100% Solids Rigid Polyurethane Coatings Technology for Pipeline Field Joints and Rehabilitation. CORROSION 2003. Available at: http://eprints.nmlindia.org/4182/1/98-103.PDF.

[20] Guang-Hao, C., Ho-Wai, L. D., & Ju-Chang, H. (2001). Removal of Dissolved Organic Carbon in Sanitary Gravity Sewer. Journal of Environmental Engineering, 127(4), 295–301. Available at: https://doi.org/10.1061/(ASCE)0733-9372(2001)127:4(295).

DOI: https://doi.org/10.1061/(asce)0733-9372(2001)127:4(295)

[21] Gutierrez, O., Mohanakrishnan, J., Sharma, K. R., Meyer, R. L., Keller, J., & Yuan, Z. (2008). Evaluation of oxygen injection as a means of controlling sulfide production in a sewer system. Water Research, 42(17), 4549–4561. Available at: https://doi.org/https://doi.org/10.1016/j.watres.2008.07.042.

DOI: https://doi.org/10.1016/j.watres.2008.07.042

[22] Herisson, J., Guéguen-Minerbe, M., van Hullebusch, E. D., & Chaussadent, T. (2016). Influence of the binder on the behaviour of mortars exposed to H2S in sewer networks: a long-term durability study. Materials and Structures, 50(1), 8. Available at: https://doi.org/10.1617/s11527-016-09190.

DOI: https://doi.org/10.1617/s11527-016-0919-0

[23] Hewayde, E., Nehdi, M., Allouche, E., & Nakhla, G. (2006). Effect of geopolymer cement on microstructure, compressive strength and sulphuric acid resistance of concrete. Magazine of Concrete Research, 58(5), 321–331. Available at: https://doi.org/10.1680/macr.2006.58.5.321.

DOI: https://doi.org/10.1680/macr.2006.58.5.321

[24] Irfan, M. H. (1998). Polyurethanes in the construction industry BT - Chemistry and Technology of Thermosetting Polymers in Construction Applications. In M. H. Irfan (Ed.) (p.123–144). Dordrecht: Springer Netherlands. Available at: https://doi.org/10.1007/978-94-011-4954-9_4.

DOI: https://doi.org/10.1007/978-94-011-4954-9_4

[25] Islander, B. R. L., Devinny, J. S., Member, A., Mansfeld, F., Postyn, A., & Shih, H. (1992). Microbial e c o l o g y o f c r o w n corrosion in sewers, 117(6), 751–770. Available at: https://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9372%281991%29117%3A6%28751%29.

DOI: https://doi.org/10.1061/(asce)0733-9372(1991)117:6(751)

[26] Jana, D. (2006). Sample preparation techniques in petrographic examinations of construction materials: A state-of-the-art review. In Proceedings of the twenty-eighth Conference on Cement Microscopy (p.48). Available at: https://www.scribd.com/document/157072301/2006-Sample-Preparation-Techniques-28th-ICMA.

[27] Jiahui, P., Jianxin, Z., & Jindong, Q. (2006). The mechanism of the formation and transformation of ettringite. Journal of Wuhan University of Technology-Mater. Sci. Ed., 21(3), 158–161. Available at: https://doi.org/10.1007/BF02840908.

DOI: https://doi.org/10.1007/bf02840908

[28] Jiang, G., Keller, J., Bond, P. L., & Yuan, Z. (2016). Predicting concrete corrosion of sewers using artificial neural network. Water Research, 92, 52–60. Available at: https://doi.org/10.1016/j.watres.2016.01.029.

DOI: https://doi.org/10.1016/j.watres.2016.01.029

[29] Jiang, G., Sun, J., Sharma, K. R., & Yuan, Z. (2015). Corrosion and odor management in sewer systems. Current Opinion in Biotechnology, 33, 192–197. Available at: https://doi.org/https://doi.org/10.1016/j.copbio.2015.03.007.

DOI: https://doi.org/10.1016/j.copbio.2015.03.007

[30] Jiang, G., Sun, X., Keller, J., & Bond, P. L. (2015). Identification of controlling factors for the initiation of corrosion of fresh concrete sewers. Water Research, 80, 30–40. Available at: https://doi.org/https://doi.org/10.1016/j.watres.2015.04.015.

DOI: https://doi.org/10.1016/j.watres.2015.04.015

[31] Jiang, G., Wightman, E., Donose, B. C., Yuan, Z., Bond, P. L., & Keller, J. (2014). The role of iron in sulfide induced corrosion of sewer concrete. Water Research, 49, 166—174. Available at: https://doi.org/10.1016/j.watres.2013.11.007.

DOI: https://doi.org/10.1016/j.watres.2013.11.007

[32] Jiang, G., Zhou, M., Chiu, T. H., Sun, X., Keller, J., & Bond, P. L. (2016). Wastewater-Enhanced Microbial Corrosion of Concrete Sewers. Environmental Science & Technology, 50(15), 8084–8092. Available at: https://doi.org/10.1021/acs.est.6b02093.

DOI: https://doi.org/10.1021/acs.est.6b02093

[33] Joseph, A. P., Keller, J., Bustamante, H., & Bond, P. L. (2012). Surface neutralization and H2S oxidation at early stages of sewer corrosion: Influence of temperature, relative humidity and H2S concentration. Water Research, 46(13), 4235–4245. Available at: https://doi.org/https://doi.org/10.1016/j.watres.2012.05.011.

DOI: https://doi.org/10.1016/j.watres.2012.05.011

[34] Kuliczkowska, E. (2016). Risk of structural failure in concrete sewers due to internal corrosion. Engineering Failure Analysis, 66, 110–119. Available at: https://doi.org/https://doi.org/10.1016/j.engfailanal.2016.04.026.

DOI: https://doi.org/10.1016/j.engfailanal.2016.04.026

[35] Lin, H.-W., Lu, Y., Ganigué, R., Sharma, K. R., Rabaey, K., Yuan, Z., & Pikaar, I. (2017). Simultaneous use of caustic and oxygen for efficient sulfide control in sewers. Science of The Total Environment, 601–602, 776–783. Available at: https://doi.org/https://doi.org/10.1016/j.scitotenv.2017.05.225.

DOI: https://doi.org/10.1016/j.scitotenv.2017.05.225

[36] Ling, A. L., Robertson, C. E., Harris, J. K., Frank, D. N., Kotter, C. V, Stevens, M. J., … Hernandez, M. T. (2014). Carbon Dioxide and Hydrogen Sulfide Associations with Regional Bacterial Diversity Patterns in Microbially Induced Concrete Corrosion. Environmental Science & Technology, 48(13), 7357–7364. Available at: https://doi.org/10.1021/es500763e.

DOI: https://doi.org/10.1021/es500763e

[37] Liu, Y., Ni, B.-J., Ganigué, R., Werner, U., Sharma, K. R., & Yuan, Z. (2015). Sulfide and methane production in sewer sediments. Water Research, 70, 350–359. Available at: https://doi.org/https://doi.org/10.1016/j.watres.2014.12.019.

DOI: https://doi.org/10.1016/j.watres.2014.12.019

[38] Liu, Y., Sharma, K. R., Ni, B.-J., Fan, L., Murthy, S., Tyson, G. Q., & Yuan, Z. (2015). Effects of nitrate dosing on sulfidogenic and methanogenic activities in sewer sediment. Water Research, 74, 155–165. Available at: https://doi.org/https://doi.org/10.1016/j.watres.2015.02.017.

DOI: https://doi.org/10.1016/j.watres.2015.02.017

[39] Meyer, A. H., & Ledbetter, W. B. (n.d.). Sulfuric acid attack on concrete sewer pipe. Journal of the Sanitary Engineering Division, 96(5), 1167–1182. Available at: http://cedb.asce.org/CEDBsearch/record.jsp?dockey=0017277.

[40] Mobin, M., Malik, A. U., Al-Muaili, F., & Al-Hajri, M. (2012). Performance evaluation of a commercial polyurethane coating in marine environment. Journal of Materials Engineering and Performance, 21(7), 1292–1299. Available at: https://doi.org/10.1007/s11665-011-0034.

DOI: https://doi.org/10.1007/s11665-011-0034-x

[41] Munger, C. G., & Vincent, L. D. (1999). Corrosion protection by protective coatings (2nd ed.). Houston Tex.: National Association of Corrosion Engineers. Retrieved from http://www.worldcat.org/title/corrosion-prevention-by-protective-coatings/oclc/964731722?referer=di&ht=edition#.Wm4uIRT7lxQ.mendeley.

[42] Ng, P. L., & Kwan, A. K. H. (2015). Improving Concrete Durability for Sewerage Applications BT - Engineering Asset Management - Systems, Professional Practices and Certification. In P. W. Tse, J. Mathew, K. Wong, R. Lam, & C. N. Ko (Eds.) (p.1043–1053). Cham: Springer International Publishing. Available at: https://link.springer.com/book/10.1007%2F978-3-319-09507-3.

DOI: https://doi.org/10.1007/978-3-319-09507-3_89

[43] Nielsen, A. H., Vollertsen, J., Jensen, H. S., Wium-Andersen, T., & Hvitved-Jacobsen, T. (2008). Influence of pipe material and surfaces on sulfide related odor and corrosion in sewers. Water Research, 42(15), 4206–4214. Available at: https://doi.org/https://doi.org/10.1016/j.watres.2008.07.013.

DOI: https://doi.org/10.1016/j.watres.2008.07.013

[44] Noeiaghaei, T., Mukherjee, A., Dhami, N., & Chae, S.-R. (2017). Biogenic deterioration of concrete and its mitigation technologies. Construction and Building Materials, 149, 575–586. Available at: https://doi.org/https://doi.org/10.1016/j.conbuildmat.2017.05.144.

DOI: https://doi.org/10.1016/j.conbuildmat.2017.05.144

[45] O connell, M. ;, Mcnally, C. ;, Richardson, M. G., ,connell, O., Mcnally, M., & Richardson, M. G. (2010). Title Biochemical attack on concrete in wastewater applications : a state of the art review Biochemical Attack on Concrete in Wastewater Applications: A State of the Art Review. Cement and Concrete Composites, 32(7), 0–21. Available at: https://doi.org/10.1016/j.cemconcomp.2010.05.001.

DOI: https://doi.org/10.1016/j.cemconcomp.2010.05.001

[46] Ohama, Y. (1995a). 5 - Fabrication and Properties of Redispersible Polymer Powder-Modified Systems BT - Handbook of Polymer-Modified Concrete and Mortars (p.157–174). Park Ridge, NJ: William Andrew Publishing. Available at: https://doi.org/https://doi.org/10.1016/B978-081551358-2.50006-2.

DOI: https://doi.org/10.1016/b978-081551358-2.50006-2

[47] Ohama, Y. (1995b). 6 - Fabrication and Properties of Water-Soluble Polymer-Modified Systems BT - Handbook of Polymer-Modified Concrete and Mortars (p.175–182). Park Ridge, NJ: William Andrew Publishing. Available at: https://doi.org/https://doi.org/10.1016/B978-081551358-2.50007-4.

DOI: https://doi.org/10.1016/b978-081551358-2.50007-4

[48] Ohama, Y. (1995c). 7 - Fabrication and Properties of Liquid Resin and Monomer-Modified Systems BT - Handbook of Polymer-Modified Concrete and Mortars (p.183–204). Park Ridge, NJ: William Andrew Publishing. Available at: https://doi.org/https://doi.org/10.1016/B978-081551358-2.50008-6.

DOI: https://doi.org/10.1016/b978-081551358-2.50008-6

[49] Ohama, Y. (1995d). 8 - Special Polymer-Modified Systems BT - Handbook of Polymer-Modified Concrete and Mortars (p.205–221). Park Ridge, NJ: William Andrew Publishing. Available at: https://doi.org/https://doi.org/10.1016/B978-081551358-2.50009-8.

DOI: https://doi.org/10.1016/b978-081551358-2.50009-8

[50] Okabe, S., Odagiri, M., Ito, T., & Satoh, H. (2007). Succession of Sulfur-Oxidizing Bacteria in the Microbial Community on Corroding Concrete in Sewer Systems . Applied and Environmental Microbiology, 73(3), 971–980. Available at: https://doi.org/10.1128/AEM.02054-06.

DOI: https://doi.org/10.1128/aem.02054-06

[51] Parande, A. K., Ramsamy, P. L., Ethirajan, S., Rao, C. R. K., & Palanisamy, N. (2006). Deterioration of reinforced concrete in sewer environments. Proceedings of the Institution of Civil Engineers - Municipal Engineer, 159(1), 11–20. Available at: https://doi.org/10.1680/muen.2006.159.1.11.

DOI: https://doi.org/10.1680/muen.2006.159.1.11

[52] Park, K., Lee, H., Phelan, S., Liyanaarachchi, S., Marleni, N., Navaratna, D., … Shu, L. (2014). Mitigation strategies of hydrogen sulphide emission in sewer networks – A review. International Biodeterioration & Biodegradation, 95, 251–261. Available at: https://doi.org/https://doi.org/10.1016/j.ibiod.2014.02.013.

DOI: https://doi.org/10.1016/j.ibiod.2014.02.013

[53] Parker, C. D. (1951). Mechanics of Corrosion of Concrete Sewers by Hydrogen Sulfide. Sewage and Industrial Wastes, 23(12), 1477–1485. Retrieved from http://www.jstor.org/stable/25031769.

[54] PARKER, C. D. (1947). Species of Sulphur Bacteria Associated with the Corrosion of Concrete. Nature, 159, 439. Retrieved from http://dx.doi.org/10.1038/159439b0.

[55] Pikaar, I., Sharma, K. R., Hu, S., Gernjak, W., Keller, J., & Yuan, Z. (2014). Reducing sewer corrosion through integrated urban water management. Science, 345(6198), 812 LP-814. Retrieved from http://science.sciencemag.org/content/345/6198/812.abstract.

DOI: https://doi.org/10.1126/science.1251418

[56] Pletcher, D., & Walsh, F. C. (1993). Corrosion and its control BT - Industrial Electrochemistry. In D. Pletcher & F. C. Walsh (Eds.) (p.481–542). Dordrecht: Springer Netherlands. Available at: https://doi.org/10.1007/978-94-011-2154-5_10.

DOI: https://doi.org/10.1007/978-94-011-2154-5_10

[57] Santo Domingo, J. W., Revetta, R. P., Iker, B., Gomez-Alvarez, V., Garcia, J., Sullivan, J., & Weast, J. (2011). Molecular survey of concrete sewer biofilm microbial communities. Biofouling, 27(9), 993–1001. Available at: https://doi.org/10.1080/08927014.2011.618637.

DOI: https://doi.org/10.1080/08927014.2011.618637

[58] Saucier, F., & Lamberet, S. (2009). Calcium aluminate concrete for sewers: going from qualitative to quantitative evidence of performance. In Proceedings of the international RILEM TC-211 PAE final conference, Toulouse (p.398–407). Available at: demo.webdefy.com/rilem-new/wp-content/uploads/2016/10/pro063-040.pdf.

[59] Sharma, K. R., Yuan, Z., de Haas, D., Hamilton, G., Corrie, S., & Keller, J. (2008). Dynamics and dynamic modelling of H2S production in sewer systems. Water Research, 42(10), 2527–2538. Available at: https://doi.org/https://doi.org/10.1016/j.watres.2008.02.013.

DOI: https://doi.org/10.1016/j.watres.2008.02.013

[60] Stutzman, P. E. (2001). Scanning Electron Microscopy in Concrete Petrography. Materials Science of Concrete Special Volume, 59–72. Retrieved from Available at: http://fire.nist.gov/bfrlpubs/build01/PDF/b01086.pdf.

[61] Sulikowski, J., & Kozubal, J. (2016). The Durability of a Concrete Sewer Pipeline under Deterioration by Sulphate and Chloride Corrosion. Procedia Engineering, 153, 698–705. Available at: https://doi.org/https://doi.org/10.1016/j.proeng.2016.08.229.

DOI: https://doi.org/10.1016/j.proeng.2016.08.229

[62] Sun, J., Pikaar, I., Sharma, K. R., Keller, J., & Yuan, Z. (2015). Feasibility of sulfide control in sewers by reuse of iron rich drinking water treatment sludge. Water Research, 71, 150–159. Available at: https://doi.org/https://doi.org/10.1016/j.watres.2014.12.044.

DOI: https://doi.org/10.1016/j.watres.2014.12.044

[63] Sun, X., Jiang, G., Bond, P. L., & Keller, J. (2015). Impact of fluctuations in gaseous H2S concentrations on sulfide uptake by sewer concrete: The effect of high H2S loads. Water Research, 81, 84–91. Available at: https://doi.org/https://doi.org/10.1016/j.watres.2015.05.044.

DOI: https://doi.org/10.1016/j.watres.2015.05.044

[64] Sun, X., Jiang, G., Bond, P. L., Keller, J., & Yuan, Z. (2015). A novel and simple treatment for control of sulfide induced sewer concrete corrosion using free nitrous acid. Water Research, 70, 279–287. Available at: https://doi.org/https://doi.org/10.1016/j.watres.2014.12.020.

DOI: https://doi.org/10.1016/j.watres.2014.12.020

[65] Sun, X., Jiang, G., Bond, P. L., Wells, T., & Keller, J. (2014). A rapid, non-destructive methodology to monitor activity of sulfide-induced corrosion of concrete based on H2S uptake rate. Water Research, 59, 229–238. Available at: https://doi.org/10.1016/j.watres.2014.04.016.

DOI: https://doi.org/10.1016/j.watres.2014.04.016

[66] Sydney, R., Esfandi, E., & Surapaneni, S. (1996). Control concrete sewer corrosion via the crown spray process. Water Environment Research, 68(3), 338–347. Available at: https://doi.org/10.2175/106143096X127785.

DOI: https://doi.org/10.2175/106143096x127785

[67] Taylor, C. B., & Hutchinson, G. H. (1947). Corrosion of concrete caused by sulphur-oxidising bacteria. Journal of the Society of Chemical Industry, 66(2), 54–57. Available at: https://doi.org/10.1002/jctb.5000660205.

DOI: https://doi.org/10.1002/jctb.5000660205

[68] Vahidi, E., Jin, E., Das, M., Singh, M., & Zhao, F. (2016). Environmental life cycle analysis of pipe materials for sewer systems. Sustainable Cities and Society, 27, 167–174. Available at: https://doi.org/https://doi.org/10.1016/j.scs.2016.06.028.

DOI: https://doi.org/10.1016/j.scs.2016.06.028

[69] Valix, M., Zamri, D., Mineyama, H., Cheung, W. H., Shi, J., & Bustamante, H. (2012). Microbiologically induced corrosion of concrete and protective coatings in gravity sewers. Chinese Journal of Chemical Engineering, 20(3), 433–438. Available at: https://doi.org/10.1016/S1004-9541(11)60150-X.

DOI: https://doi.org/10.1016/s1004-9541(11)60150-x

[70] Vera, R. ., Apablaza, J. ., Carvajal, A. M. ., & Vera, E. . (2013). Effect of surface coatings in the corrosion of reinforced concrete in acid environments. International Journal of Electrochemical Science, 8(10), 11832–11846. Retrieved from Available at: http://www.scopus.com/inward/record.url?eid=2-s2.0-84886494628&partnerID=40&md5=45e8250ee310776270f941a274f2279e.

[71] Vipulanandan, C., & Liu, J. (2005). Performance of polyurethane-coated concrete in sewer environment. Cement and Concrete Research, 35(9), 1754–1763. Available at: https://doi.org/10.1016/j.cemconres.2004.10.033.

DOI: https://doi.org/10.1016/j.cemconres.2004.10.033

[72] Wei, S., Jiang, Z., Liu, H., Zhou, D., & Sanchez-Silva, M. (2013). Microbiologically induced deterioration of concrete - A review. Brazilian Journal of Microbiology, 44(4), 1001–1007. Available at: https://doi.org/10.1590/S1517-83822014005000006.

DOI: https://doi.org/10.1590/s1517-83822014005000006

[73] Wells, T., & Melchers, R. E. (2015). Modelling concrete deterioration in sewers using theory and field observations. Cement and Concrete Research, 77, 82–96. Available at: https://doi.org/https://doi.org/10.1016/j.cemconres.2015.07.003.

DOI: https://doi.org/10.1016/j.cemconres.2015.07.003

[74] William Guan, S. (2001). Corrosion Protection By Coatings for Water and Wastewater Pipelines, 1–28. Available at: https://www.chlor rid.com/saltinfo/links/Pipeline%20Corrosion%20Protection%20by%20Guan%20page%2017.pdf.

[75] Zhang, L., De Schryver, P., De Gusseme, B., De Muynck, W., Boon, N., & Verstraete, W. (2008a). Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: A review. Water Research, 42(1), 1–12. Available at: https://doi.org/https://doi.org/10.1016/j.watres.2007.07.013.

DOI: https://doi.org/10.1016/j.watres.2007.07.013

[76] Zhang, L., De Schryver, P., De Gusseme, B., De Muynck, W., Boon, N., & Verstraete, W. (2008b). Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: A review. Water Research, 42(1–2), 1–12. Available at: https://doi.org/10.1016/j.watres.2007.07.013.

DOI: https://doi.org/10.1016/j.watres.2007.07.013

[77] Zheng, M., Zuo, Z., Zhang, Y., Cui, Y., Dong, Q., Liu, Y., … Yuan, Z. (2017). Nitrite production from urine for sulfide control in sewers. Water Research, 122, 447–454. Available at: https://doi.org/https://doi.org/10.1016/j.watres.2017.05.048.

DOI: https://doi.org/10.1016/j.watres.2017.05.048
Show More Hide
Cited By:
This article has no citations.