Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

IJET > Volume 15 > Conversion of Lignocellulosic Biomass to...
< Back to Volume

Conversion of Lignocellulosic Biomass to Bioethanol: An Overview with a Focus on Pretreatment

Full Text PDF

Abstract:

The present review article aims to highlight various pretreatment technologies involved in the biochemical conversion of biomass to bioethanol from lignocellulosic biomass without the process modification. Pretreatment technologies are aimed to increase the enzyme susceptibility to the biomass for high yield of ethanol production through microbial fermentation. Broadly, pretreatment methods are divided into four categories including physical, chemical, physico-chemical and biological. This paper comprehensively reviewed on the lignocellulosic biomass to bioethanol process with focuses on pretreatment methods, their mechanisms, combination of different pretreatment technologies, the addition of external chemical agents, advantages, and disadvantages. It also discussed the ethanol productions from biomass in details without disturbing the process integrity.

Info:

Periodical:
International Journal of Engineering and Technologies (Volume 15)
Pages:
17-43
Citation:
Y. D. Singh and K. B. Satapathy, "Conversion of Lignocellulosic Biomass to Bioethanol: An Overview with a Focus on Pretreatment", International Journal of Engineering and Technologies, Vol. 15, pp. 17-43, 2018
Online since:
November 2018
Export:
Distribution:
References:

[1] H. Chum et al. (Eds.), Bioenergy 'IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation, Cambridge University Press, United Kingdon and New York, NY, USA, (2011).

[2] B. Nicolas, M.I. Mohamad Nasir, A.R. Afidah, Biomass to bioethanol: Initiatives of the future for lignin, ISRN Materials Science. (2011) ID 461482.

DOI: https://doi.org/10.5402/2011/461482

[3] S.N. Naik et al., Production of first and second generation biofuels: A comprehensive review, Renewable and Sustainable Energy Reviews. 14(2) (2010) 578–597.

DOI: https://doi.org/10.1016/j.rser.2009.10.003

[4] P. Wei et al., A review of membrane technology for bioethanol production, Renewable and Sustainable Energy Reviews. 30 (2013) 388–400.

[5] P.S. Nigam, A. Singh, Production of liquid biofuels from renewable resources, Prog. Energy Combust Sci. 37 (2011) 52-68.

[6] Ó.J. Sánchez, C.A. Cardona, Trends in biotechnological production of fuel ethanol from different feedstocks, Bioresource Technology. 99 (2008) 5270–5295.

DOI: https://doi.org/10.1016/j.biortech.2007.11.013

[7] A. Tasneem, S.A. Abbas, Biomass energy and the environmental impacts associated with its production and utilization, Renewable and Sustainable Energy Reviews. 14 (2010) 919-937.

DOI: https://doi.org/10.1016/j.rser.2009.11.006

[8] J. Parez-Garcia et al., An assessment of carbon pools, storage and wood products market substitution using life-cycle analysis Results, Wood Fiber Science. 37 (2005) 140-148.

[9] P.H. Raven, Biology of plants (6th edition), W.H. Freeman and company/Worth Publishers, (1992).

[10] Kirk-Othmer Encyclopedia of Chemical Technology, 4th edition (2001), 27 volumes. ISBN: 0471484946.

[11] S. Prasad, A. Singh, H.C. Joshi, Ethanol as an alternative fuel from agricultural, industrial and urban residues, Resource Conserve Recycle. 50 (2007) 1-39.

[12] F. John et al., Ethanol production of Banana shell and cassava starch, Dyna Universidad Nacional de Colombia. 73 (2006) 21-27.

[13] Y. Sun, J. Cheng, Hydrolysis of lignocellulosic materials for ethanol production: a review, Bioresour. Technol. 83 (2002) 1–11.

[14] V.A. Awafo, D.S. Chahal, B.K. Simpson, Optimization of ethanol production by Saccharomyces cerevisiae (ATCC 60868) and Pichia stipitis Y-7124: A response surface model for simultaneous hydrolysis and fermentation of wheat straw, Journal of Food Biotechnology. 22 (1998).

DOI: https://doi.org/10.1111/j.1745-4514.1998.tb00258.x

[15] G. Atranikian, Microbial Degradation of Starch, in: Microbial Degradation of Natural Products. Ed. G. Winkelmann. VCH Verlag, 28-56, Weinheim, Germany, (1992).

[16] A.G. Berlin et al., Weak lignin-binding enzymes. A novel approach to improve activity of cellulases for hydrolysis of lignocellulosics, Applied Biochemistry & Biotechnology. 121-124 (2005) 163-170.

DOI: https://doi.org/10.1385/abab:121:1-3:0163

[17] G.J.V. Betancur, Avanços em biotecnologia de hemicelulose para produção de etanol por Pichia stipitis. Dissertação de Mestrado, Escola de Química da UFRJ, Rio de Janeiro, (2005).

DOI: https://doi.org/10.11606/t.97.2011.tde-23082013-105420

[18] A. Breen, F.L. Singleton, Fungi in lignocellulose breakdown and biopulping, Current Opinion Biotechnology. 10(3) (1999) 252-258.

DOI: https://doi.org/10.1016/s0958-1669(99)80044-5

[19] B.S. Bower, Fusion proteins of an exocellobiohydrolase and an endoglucanase for use in the saccharification of cellulose and hemicellulose. US patent 2005093073, (2005).

[20] M. Kim, D.F. Day, Composition of sugar cane, energy cane, and sweet sorghum suitable for ethanol production at Louisiana sugar mills, Journal of Industrial Microbiology & Biotechnology. 38(7) (2011) 803-807.

DOI: https://doi.org/10.1007/s10295-010-0812-8

[21] M.F. Li et al., Sodium hydroxide/urea based pretreatment of bamboo for bioethanol production:characterization of the cellulose rich fraction, Industrial Crops and Products. 32 (2010) 551–559.

DOI: https://doi.org/10.1016/j.indcrop.2010.07.004

[22] R.P. Swatloski et al., Dissolution of cellose with- ionic liquids, JACS. 124(18) (2002) 4974–4975.

[23] P.F.H. Harmsen et al., Literature Review of Physical and Chemical Pretreatment Processes for Lignocellulosic Biomass, Energy Research Centre of Netherlands (ECN), (2010).

[24] F.M. Girio et al., Hemicelluloses for fuel ethanol: a review, Bioresource Technology, 101 (2010) 4775–800.

[25] H.M. Sohrab et al., Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment, Sustainable Energy Reviews. 27 (2013) 77–93.

[26] Z. Yi, P. Zhongli, Z. Ruihong, Overview of biomass pretreatment for cellulosic ethanol production, Int. J. Agric. Biol. Eng. 2(3) (2009) 51.

[27] S. Fernando et al., Biorefineries: current status, challenges, and future direction, Energy Fuels. 20 (2006) 1727-1737.

DOI: https://doi.org/10.1021/ef060097w

[28] N. Mosier et al., Features of promising technologies for pretreatment of lignocellulosic biomass, Bioresource Technology. 96 (2005) 673-686.

DOI: https://doi.org/10.1016/j.biortech.2004.06.025

[29] D.J. Schell, B. Duff, Review of pilot plant programs for bioethanol conversion, in: C.E. Wyman (Ed.), Handbook on bioethanol: Production and utilization. 7 (1996) 381-394.

DOI: https://doi.org/10.1201/9780203752456-17

[30] A. Berlin et al., Inhibition of cellulase, xylanase and beta-glucosidase activities by softwood lignin preparations, J. Biotechnol. 125 (2006) 198-209.

[31] K. Karimi, S. Kheradmandinia, M.J. Taherzadeh, Conversion of rice straw to sugars by dilute acid hydrolysis, Biomass Bioenerg. 30 (2006) 247-253.

DOI: https://doi.org/10.1016/j.biombioe.2005.11.015

[32] L. Fan, Y. Lee, M. Gharpuray, The nature of lignocellulosics and their pretreatments for enzymatic hydrolysis, Adv. Biochem. Eng. Biotechnol. 23 (1982) 158-183.

[33] M.J. Taherzadeh, K. Karimi, Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review, Int. J. Mol. Sci. 9 (2008) 1621–1651.

DOI: https://doi.org/10.3390/ijms9091621

[34] M. Kumakura, I. Kaetsu, Effect of radiation pretreatment of bagasse on enzymatic and acid hydrolysis, Biomass, 3 (1983) 199-208.

DOI: https://doi.org/10.1016/0144-4565(83)90012-4

[35] M. Kumakura, I. Kaetsu, Pretreatment by radiation and acids of chaff and its effect on enzymatic hydrolysis of cellulose, Agr. Wastes. 9 (1984) 279-287.

DOI: https://doi.org/10.1016/0141-4607(84)90086-6

[36] S.A.S. Mamar, A. Hadjadj, Radiation pretreatments of cellulose materials for the enhancement of enzymatic hydrolysis, Radiat. Phys. Chem. 35 (1990) 451-455.

[37] R. Singh et al., Microwave assisted alkali pretreatment of rice straw for enhancing enzymatic digestibility, Journal of Energy. 2014 (2014) Article ID 483813.

DOI: https://doi.org/10.1155/2014/483813

[38] C. Karunanithy, K. Muthukumarappan, Optimization of alkali soakingand extrusion pretreatment of prairie cord grass for maximum sugar recovery by enzymatic hydrolysis, Biochemical Engineering Journal. 54 (2011) 71–82.

DOI: https://doi.org/10.1016/j.bej.2011.02.001

[39] P. Alvira et al., Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review, Bioresource Technology. 101 (2010) 4851–4861.

DOI: https://doi.org/10.1016/j.biortech.2009.11.093

[40] J. Yoo et al., Thermo-mechanical extrusion pretreatment for conversion of soybean hulls to fermentable sugars, Bioresource Technology. 102 (2011) 7583–7590.

DOI: https://doi.org/10.1016/j.biortech.2011.04.092

[41] O. Bobleter, Hydrothermal degradation of polymers derived from plants, Progress in Polymer Science. 5 (1994) 797–841.

DOI: https://doi.org/10.1016/0079-6700(94)90033-7

[42] M. Tutt, T. Kikas, J. Olt, Influence of different pretreatment methods on bioethanol production from wheat straw, Agronomy Research Biosystem Engineering. 1 (2012) 269–276.

[43] R. Samuel et al., Solid-state NMR characterization of switchgrass cellulose after dilute acid pretreatment, Biofuels. 1(1) (2010) 85–90.

DOI: https://doi.org/10.4155/bfs.09.17

[44] M. Foston, A.J. Ragauskas, Changes in lignocellulosic supramolecular and ultrastructure during dilute acid pretreatment of Populus and switchgrass, Biomass and Bioenergy. 34(12) (2010) 1885–1895.

DOI: https://doi.org/10.1016/j.biombioe.2010.07.023

[45] H. Krassig, J. Schurz, Ullmann's Encyclopedia of Industrial Chemistry, Sixth edition, Weinheim, Germany, Wiley-VCH, (2002).

[46] L. Tao et al., Process and technoeconomic analysis of leading pretreatment technologies for lignocellulosic ethanol production using switchgrass, Bioresource Technology. 102(24) (2011) 11105–11114.

DOI: https://doi.org/10.1016/j.biortech.2011.07.051

[47] D. Zhang et al., Optimization of dilute acid-catalyzed hydrolysis of oil palm empty fruit bunch for high yield production of xylose, Chemical Engineering Journal. 181(182) (2012) 636–642.

DOI: https://doi.org/10.1016/j.cej.2011.12.030

[48] F.K. Kazi, J. Fortman, R. Anex, Techno-Economic analysis of biochemical scenarios for production of cellulosic ethanol, Tech. Rep. NREL/TP-6A2-46588, NREL, (2010).

DOI: https://doi.org/10.2172/982937

[49] F. Talebnia, D. Karakashev, I. Angelidaki, Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation, Bioresource Technology. 101(13) (2010) 4744–4753.

DOI: https://doi.org/10.1016/j.biortech.2009.11.080

[50] A. Li, B. Antizar-Ladislao, M. Khraisheh, Bioconversion of municipal solid waste to glucose for bio-ethanol production, Bioprocess and Biosystems Engineering. 30(3) (2007) 189–196.

DOI: https://doi.org/10.1007/s00449-007-0114-3

[51] P. Lenihan et al., Dilute acid hydrolysis of lignocellulosic biomass, Chemical Engineering Journal. 156(2) (2010) 395–403.

[52] A. Avci et al., Response surface optimization of corn stover pretreatment using dilute phosphoric acid for enzymatic hydrolysis and ethanol production, Bioresource Technology. 130 (2013) 603–612.

DOI: https://doi.org/10.1016/j.biortech.2012.12.104

[53] E. Heredia-Olea, E. P´erez-Carrillo, S.O. Serna-Sald´ıvar, Effects of different acid hydrolyses on the conversion of sweet sorghum bagasse into C5 and C6 sugars and yeast inhibitors using response surface methodology, Bioresource Technology. 119 (2012).

DOI: https://doi.org/10.1016/j.biortech.2012.05.122

[54] J.W. Lee, T.W. Jeffries, Efficiencies of acid catalysts in the hydrolysis of lignocellulosic biomass over a range of combined severity factors, Bioresource Technology. 102(10) (2011) 5884–5890.

DOI: https://doi.org/10.1016/j.biortech.2011.02.048

[55] J.W. Lee et al., The roles of xylan and lignin in oxalic acid pretreated corncob during separate enzymatic hydrolysis and ethanol fermentation, Bioresource Technology. 101(12) (2010) 4379–4385.

DOI: https://doi.org/10.1016/j.biortech.2009.12.112

[56] X. Li et al., Oxalic acid pretreatment of rice straw particles and loblolly pine chips: release of hemicellulosic carbohydrates, Tappi Journal. 10(5) (2011.) 41–45.

[57] G.Y.S. Mtui, Oxalic acid pretreatment, fungal enzymatic saccharification and fermentation of maize residues to ethanol, African Journal of Biotechnology. 11(4) (2012) 843–851.

DOI: https://doi.org/10.5897/ajb11.3032

[58] T. Zhang, R. Kumar, C.E. Wyman, Sugar yields from dilute oxalic acid pretreatment of maple wood compared to those with other dilute acids and hot water, Carbohydrate Polymers. 92 (2013) 334–344.

DOI: https://doi.org/10.1016/j.carbpol.2012.09.070

[59] M.J. Taherzadeh, K. Karimi, Acid-based hydrolysis processes for ethanol from lignocellulosic materials: A review, BioResources. 2 (2007) 472-499.

[60] M. Zainudin et al., Utilization of glucose recovered by phase separation system from acid-hydrolysed oil palm empty fruit bunch for bioethanol production, Pertanika Journal of Tropical Agricultural Science. 35(1) (2012) 117–126.

[61] A.M. Azzam, Saccharification of bagasse cellulose pretreated with ZnCl2 and HCl, Biomass Bioenerg. 12 (1987) 71-77.

DOI: https://doi.org/10.1016/0144-4565(87)90009-6

[62] N. Sathitsuksanoh, Z. Zhu, Y.H.P. Zhang, Cellulose solvent- and organic solvent-based lignocellulose fractionation enabled efficient sugar release from a variety of lignocellulosic feedstocks, Bioresource Technology. 117 (2012) 228–233.

DOI: https://doi.org/10.1016/j.biortech.2012.04.088

[63] J. Xu, X. Zhang, J.J. Cheng, Pretreatment of corn stover for sugar production with switchgrass-derived black liquor, Bioresource Technology. 111 (2012) 255–260.

DOI: https://doi.org/10.1016/j.biortech.2012.02.006

[64] C. Vaccarino et al., Effect of SO2, NaOH and Na2CO3 pretreatments on the degradability and cellulase digestibility of grape marc, Biol. Waste. 20 (1987) 79-88.

DOI: https://doi.org/10.1016/0269-7483(87)90158-3

[65] N. Sarkar et al., Bioethanol production from agricultural wastes: an overview, Renewable Energy. 37(1) (2012) 19–27.

[66] H.Y. Yoo et al., Optimization of sodium hydroxide pretreatment of canola agricultural residues for fermentable sugar production using statistical method, in: Proceedings of the International Conference on Future Environment and Energy (IPCBEE '12), vol. 28, (2012).

[67] S.Y. Lin, I.S. Lin, Ullmann's Encyclopedia of Industrial Chemistry, Sixth edition, Wein-heim, Germany, Wiley-VCH, (2002).

[68] M. Gaspar, G. Kalman, K. Reczey, Corn fiber as a raw material for hemicellulose and ethanol production, Process Biochem. 42 (2007) 1135-1139.

DOI: https://doi.org/10.1016/j.procbio.2007.04.003

[69] C. Bougrier, J.P. Delgenes, H. Carrere, Combination of thermal treatments and anaerobic digestion to reduce sewage sludge quantity and improve biogas yield, Process Saf. Environ. Protect. 84 (2006) 280-284.

DOI: https://doi.org/10.1205/psep.05162

[70] M. Pedersen, K.S. Johansen, A.S. Meyer, Low temperature lignocellulose pretreatment: effects and interactions of pretreatment pH are critical for maximizing enzymatic monosaccharide yields from wheat straw, Biotechnology for Biofuels. 4 (2011).

DOI: https://doi.org/10.1186/1754-6834-4-11

[71] M. Ioelovich, E. Morag, Study of enzymatic hydrolysis of mild pretreated lignocellulosic biomasses, BioResources. 7(1) (2012) 1040–1052.

[72] R.A. Silverstein et al., A comparison of chemical pretreatment methods for improving saccharification of cotton stalks, Bioresource Technology. 98(16) (2007) 3000–3011.

DOI: https://doi.org/10.1016/j.biortech.2006.10.022

[73] B.C. Saha, M.A. Cotta, Ethanol production from alkaline peroxide pretreated enzymatically saccharified wheat straw, Biotechnol. Progr. 22 (2006) 449-453.

DOI: https://doi.org/10.1021/bp050310r

[74] D. Mishima et al., Comparative study on chemical pretreatments to accelerate enzymatic hydrolysis of aquatic macrophyte biomass used in water purification processes, Bioresource Technol. 97 (2006) 2166-2172.

DOI: https://doi.org/10.1016/j.biortech.2005.09.029

[75] G. Banerjee et al., Rapid optimization of enzyme mixtures for deconstruction of diverse pretreatment/biomass feedstock combinations, Biotechnology for Biofuels. 3 (2010) article 22.

DOI: https://doi.org/10.1186/1754-6834-3-22

[76] B.C. Saha, M.A. Cotta, Enzymatic saccharification and fermentation of alkaline peroxide pretreated rice hulls to ethanol, Enzyme Microb. Tech. 41 (2007) 528-532.

DOI: https://doi.org/10.1016/j.enzmictec.2007.04.006

[77] G. Banerjee et al., Alkaline peroxide pretreatment of corn stover: effects of biomass, peroxide, and enzyme loading and composition on yields of glucose and xylose, Biotechnology for Biofuels. 4 (2011) article 16.

DOI: https://doi.org/10.1186/1754-6834-4-16

[78] X.F. Sun et al., Characteristics of degraded cellulose obtained from steam-exploded wheat straw, Carbohyd. Res. 340 (2005) 97-106.

DOI: https://doi.org/10.1016/j.carres.2004.10.022

[79] R.J. Garlock et al., Comparative material balances around pretreatment technologies for the conversion of switchgrass to soluble sugars, Bioresource Technology. 102(24) (2011) 11063–11071.

[80] S.C. Rabelo, R.M. Filho, A.C. Costa, A comparison between lime and alkaline hydrogen peroxide pretreatments of sugarcane bagasse for ethanol production, Applied Biochemistry and Biotechnology. 148(1–3) (2008) 45–58.

DOI: https://doi.org/10.1007/978-1-60327-526-2_53

[81] R. Kumar, C.E. Wyman, Cellulase adsorption and relationship to features of corn stover solids produced by leading pretreatments, Biotechnology and Bioengineering. 103(2) (2009) 252–267.

DOI: https://doi.org/10.1002/bit.22258

[82] M. Falls, M.T. Holtzapple, Oxidative lime pretreatment of alamo switchgrass, Applied Biochemistry and Biotechnology. 165(2) (2011) 506–522.

DOI: https://doi.org/10.1007/s12010-011-9271-6

[83] S. Kim, M.T. Holtzapple, Lime pretreatment and enzymatic hydrolysis of corn stover, Bioresour Technol. 96 (2005) 1994–(2006).

DOI: https://doi.org/10.1016/j.biortech.2005.01.014

[84] B.C. Saha, M.A. Cotta, Lime pretreatment, enzymatic saccharification and fermentation of rice hulls to ethanol, Biomass Bioenergy. 32 (2008) 971–977.

DOI: https://doi.org/10.1016/j.biombioe.2008.01.014

[85] R. Sharma et al., Potential of potassium hydroxide pretreatment of Switch grass for fermentable sugar production, Appl. Biochem. Biotechnol. 169(3) (2012) 761–772.

DOI: https://doi.org/10.1007/s12010-012-0009-x

[86] M.G. Alriols et al., Agricultural palmoil tree residues as Raw material for cellulose, lignin and hemicelluloses production by ethylene glycol pulping process, Chemical Engineering Journal. 148(1) (2009) 106-114.

DOI: https://doi.org/10.1016/j.cej.2008.08.008

[87] M. Ichwan, T.W. Son, Study on organosolv pulping methods of oil palm biomass, in: International Seminar on Chemistry, 2011, p.364–370.

[88] H.L. Chum et al., Evaluation of pretreatments of biomass for enzymatic hydrolysis of cellulose. Solar Energy Research Institute: Golden, Colorado, 1985, pp.1-64.

[89] N. Park et al., Organosolv pretreatment with various catalysts for enhancing enzymatic hydrolysis of pitch pine (Pinus rigida), Bioresource Technology. 101(18) (2010) 7046–7053.

DOI: https://doi.org/10.1016/j.biortech.2010.04.020

[90] F. Sun, H. Chen, Organosolv pretreatment by crude glycerol from oleochemicals industry for enzymatic hydrolysis of wheat straw, Bioresour. Technol 99 (2008) 5474–5479.

DOI: https://doi.org/10.1016/j.biortech.2007.11.001

[91] Geng A, Xin F, Ip J (2012) Ethanol production from horticultural waste treated by a modified organosolv method. Bioresour Technol 104:715–721.

[92] Hideno A, Kawashima A, Endo T, Honda K, Morita M (2013).

[93] Schutt BD and Abraham MA, "Evaluation of a monolith reactor for the catalytic wet oxidation of cellulose, Chemical Engineering Journal, vol. 103, no. 1–3, p.77–88, (2004).

DOI: https://doi.org/10.1016/j.cej.2004.05.016

[94] Schmidt, A.; Thomsen, A. Optimization of wet oxidation pretreatment of wheat straw. Bioresource Technol. 1998, 64, 139-151.

DOI: https://doi.org/10.1016/s0960-8524(97)00164-8

[95] Schultz, T.P.; McGinnis, G.D.; Biermann, C.J. Similarities and differences in pretreating woody biomass by steam explosion, wet oxidation, autohydrolysis, and rapid steam hydrolysis/continuous extraction. In Proceedings of Annual Symposium on Energy from Biomass and Wastes, Lake Buena Vista, FL, USA, (1984).

[96] Palonen H, Thomsen AB, Tenkanen M, Schmidt AS and Viikari L, Evaluation of wet oxidation pretreatment for enzymatic hydrolysis of softwood, Applied Biochemistry and Biotechnology A, vol. 117, no. 1, p.1–17, (2004).

DOI: https://doi.org/10.1385/abab:117:1:01

[97] Garrote, G.; Dominguez, H.; Parajo, J.C. Hydrothermal processing of lignocellulosic materials. Holz Als Roh-und Werkst. 1999, 57, 191-202.

DOI: https://doi.org/10.1007/s001070050039

[98] Mart´ın C, Gonz´alez Y, Fern´andez T, and Thomsen AB "Investigation of cellulose convertibility and ethanolic fermentation of sugarcane bagasse pretreated by wet oxidation and steam explosion, Journal of Chemical Technology and Biotechnology, vol. 81, no. 10, p.1669–1677, (2006).

DOI: https://doi.org/10.1002/jctb.1586

[99] Thomsen AB and Schmidt S, Further Development of Chemical and Biological Processes for Production of Bioethanol: Optimisation of Pre-Treatment Processes and Characterisation of Products, Riso-R-1110(EN), Riso National Laboratory, Roskilde, Denmark, (1999).

[100] Rovio S, Kallioinen A, Tamminen T, Hakola M, Leskel M, and Siika-ahoa M, "Catalysed alkaline oxidation as a wood fractionation technique, BioResources, vol. 7, no. 1, p.756–776, (2012).

[101] Klinke HB, Olsson L, Thomsen AB, and Ahring BK, "Potential inhibitors from wet oxidation of wheat straw and their effect on ethanol production of Saccharomyces cerevisiae: wet oxidation and fermentation by yeast, Biotechnology and Bioengineering, vol. 81, no. 6, p.738–747, (2003).

DOI: https://doi.org/10.1002/bit.10523

[102] Arvaniti E, Bjerre AB, and Schmidt JE, "Wet oxidation pretreatment of rape strawfor ethanol production, Biomass and Bioenergy, vol. 39, p.94–105, (2012).

DOI: https://doi.org/10.1016/j.biombioe.2011.12.040

[103] Banerjee S, Sen R, Pandey RA , Tapan C, Dewanand S, Balendu SG, Sandeep M"Evaluation of wet air oxidation as a pretreatment strategy for bioethanol production from rice husk and process optimization, Biomass and Bioenergy, vol. 33, no. 12, p.1680–1686, (2009).

DOI: https://doi.org/10.1016/j.biombioe.2009.09.001

[104] Bu L, Xing Y, Yu H, Gao Y, and Jiang J, "Comparative study of sulfite pretreatments for robust enzymatic saccharification of corn cob residue, Biotechnology for Biofuels, vol. 5, article 8, (2012).

DOI: https://doi.org/10.1186/1754-6834-5-87

[105] Jin Y, Yang L, Jameel H, Chang HM, and Phillips R, "Sodium sulfite-formaldehyde pretreatment of mixed hardwoods and its effect on enzymatic hydrolysis, Bioresource Technology, vol. 135, p.109–115, (2013).

DOI: https://doi.org/10.1016/j.biortech.2012.09.073

[106] Qiang L, Yang G, Haisong W, Bin L, Chao L, Guang Y, Xindong M Comparison of different alkali-based pretreatments of corn stover for improving enzymatic saccharification, Bioresource Technology 125 (2012) 193–199.

DOI: https://doi.org/10.1016/j.biortech.2012.08.095

[107] Cheng KK, Wang W, Zhang JA, Zhao Q, Li JP, and Xue JW, "Statistical optimization of sulfite pretreatment of corncob residues for high concentration ethanol production, Bioresource Technology, vol. 102, no. 3, p.3014–3019, (2011).

DOI: https://doi.org/10.1016/j.biortech.2010.09.117

[108] Shuai L, Yang Q, Zhu JY, Lu FC, Weimer PJ, Ralph J, Pan XJ (2010). Comparative study of PORL and dilute-acid pretreatments of spruce for cellulosic ethanol production'. Bioreource Technology, 101,3106-3114.

DOI: https://doi.org/10.1016/j.biortech.2009.12.044

[109] Tian S, Luo XL, Yang XS, Zhu JY (2010). Robust cellulosic ethanol production from SPORL-pretreated lodgepole pine using an adapted strain Saccharomyces cerevisiae without detoxification'. Bioresour Technol, 101:8678-8685.

DOI: https://doi.org/10.1016/j.biortech.2010.06.069

[110] Zhu JY, Pan XJ (2010). Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation'. Bioresour Technol, 101:4992-5002.

DOI: https://doi.org/10.1016/j.biortech.2009.11.007

[111] Yang Q and Pan X, "Pretreatment of Agave americana stalk for enzymatic saccharification, Bioresource Technology, vol. 126, p.336–340, (2012).

DOI: https://doi.org/10.1016/j.biortech.2012.10.018

[112] Silva GPD, Mack M, and Contiero J, "Glycerol: a promising and abundant carbon source for industrial microbiology,Biotechnology Advances, vol. 27, no. 1, p.30–39, (2009).

DOI: https://doi.org/10.1016/j.biotechadv.2008.07.006

[113] Guragain YN, Coninck JD, Husson F, Durand A, and Rakshit SK, "Comparison of some new pretreatment methods for second generation bioethanol production from wheat straw and water hyacinth, Bioresource Technology, vol. 102, no. 6, p.4416–4424, (2011).

DOI: https://doi.org/10.1016/j.biortech.2010.11.125

[114] Ungurean M, Fit F,igˇau, C. Paul C, Ursoiu A, and Peter F, "Ionic liquid pretreatment and enzymatic hydrolysis of wood biomass, World Academy of Science, Engineering and Technology, vol. 76, p.387–391, (2011).

[115] Chandra, R.; Bura, R.; Mabee, W.; Berlin, A.; Pan, X.; Saddler, J. Substrate pretreatment: The key to effective enzymatic hydrolysis of lignocellulosics? Adv. Biochem. Eng. Biotechnol. 2007, 108, 67-93.

DOI: https://doi.org/10.1007/10_2007_064

[116] McMillan, J. D. Himmel, M. E., Baker, J. O., Overend, R. P., Eds.; Pretreatment of lignocellulosic biomass. In Enzymatic ConVersion of Biomass for Fuels Production; American Chemical Society: Washington, DC, 1994; pp.292-324.

DOI: https://doi.org/10.1021/bk-1994-0566.ch015

[117] Grous, W. R.; Converse, A. O.; Grethlein, H. E. Effect of steam explosion pretreatment on pore size and enzymatic hydrolysis of poplar. Enzyme Microb. Technol. 1986, 8, 274–280.

DOI: https://doi.org/10.1016/0141-0229(86)90021-9

[118] Ruiz, E.; Cara, C.; Manzanares, P.; Ballesteros, M.; Castro, E. Evaluation of steam explosion pretreatment for enzymatic hydrolysis of sunflower stalks. Enzyme Microb. Tech. 2008, 42, 160-166.

DOI: https://doi.org/10.1016/j.enzmictec.2007.09.002

[119] Ballesteros, M.; Oliva, J.M.; Negro, M.J.; Manzanares, P.; Ballesteros, I. Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochem. 2004, 39, 1843-1848.

DOI: https://doi.org/10.1016/j.procbio.2003.09.011

[120] Morjanoff PJ, Gray PP. (1987). Optimization of steam explosion as method for increasing susceptibility of sugarcane bagasse to enzymatic saccharification'. Biotechnol Bioeng, 29, 733-741.

DOI: https://doi.org/10.1002/bit.260290610

[121] Soderstrom J, Mats Galbe, Guido Zacchi (2005). Separate versus simultaneous saccharification and fermentation of two-step steam pretreated softwood for ethanol production'. J.Wood Chem. Technol, 25,187-202.

DOI: https://doi.org/10.1080/02773810500191807

[122] Eklund, R.; Galbe, M.; Zacchi, G. The influence of SO2 and H2SO4 impregnation of willow prior to steam pretreatment. Bioresource Technol. 1995, 52, 225-229.

DOI: https://doi.org/10.1016/0960-8524(95)00042-d

[123] Alizadeh H,Teymouri F, Gilbert TI, Dale BE. Pretreatment of switchgrass by ammonia fiber explosion (AFEX). Appl Biochem Biotechnol 2005; 124:1133-41.

DOI: https://doi.org/10.1385/abab:124:1-3:1133

[124] Balan V, Bals B, Chundawat SP, Marshall D, Dale BE.(2009). Lignocellulosic biomass pretreatment using AFEX'. Methods Mol Biol, 581,61-77.

DOI: https://doi.org/10.1007/978-1-60761-214-8_5

[125] Lau MW, Gunawan C, Dale BE. (2009). The impacts of pretreatment on the fermentability of pretreated lignocellulosic biomass: a comparative evaluation between ammonia fiber expansion and dilute acid pretreatment'. Biotechnol Biofuels, 2,30.

DOI: https://doi.org/10.1186/1754-6834-2-30

[126] Lau MW, Dale BE. (2010). Effect of primary degradation-reaction products from ammonia fiber expansion (AFEX) –treated corn stover on the growth and fermentation of Escherichia coli KO11'. Bioresour Technol, 101,7849-7855.

DOI: https://doi.org/10.1016/j.biortech.2010.04.076

[127] Gollapalli LE, et al.(2002). Predicting digestibility of ammonia fiber explosion (AFEX) –treated straw'. Appl. Biochem. Biotechnol, 98-100, 23-35.

DOI: https://doi.org/10.1385/abab:98-100:1-9:23

[128] Varga E, Szengyel Z, Réczey K(2002). Chemical pretreatments of corn stover for enhancing enzymatic digestibility'. Appl. Biochem. Biotechnol, 98-100-73-87.

DOI: https://doi.org/10.1007/978-1-4612-0119-9_6

[129] G.P. Van Walsum et al., Conversion of lignocellulosics pretreated with liquid hot water to ethanol, Appl. Biochem. Biotechnol. 57-58 (1996) 157-170.

DOI: https://doi.org/10.1007/bf02941696

[130] S.P. Chundawat, B. Venkatesh, B.E. Dale, Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility, Biotechnol. Bioeng. 96 (2007) 219-231.

DOI: https://doi.org/10.1002/bit.21132

[131] Eggeman, T.; Elander, R.T. Process and economic analysis of pretreatment technologies. Bioresource Technol. 2005, 96, 2019-(2025).

DOI: https://doi.org/10.1016/j.biortech.2005.01.017

[132] B. Yang, C.E. Wyman, Pretreatment: the key to unlocking low-cost cellulosic ethanol, Biofuels, Bioproducts and Biorefining. 2(1) (2008) 26–40.

DOI: https://doi.org/10.1002/bbb.49

[133] H. Wu et al., Facile pretreatment of lignocellulosic biomass at high loadings in room temperature ionic liquids, Biotechnology and Bioengineering. 108(12) (2011) 2865–2875.

DOI: https://doi.org/10.1002/bit.23266

[134] T.V. Doherty et al., Ionic liquid solvent properties as predictors of lignocellulose pretreatment efficacy, Green Chemistry. 12(11) (2010) 1967–(1975).

DOI: https://doi.org/10.1039/c0gc00206b

[135] R. Arora et al., Monitoring and analyzing process streams towards understanding ionic liquid pretreatment of switchgrass (Panicum virgatum L.), Bioenergy Research. 3(2) (2010) 134–145.

DOI: https://doi.org/10.1007/s12155-010-9087-1

[136] G. Papa et al., Exploring the effect of different plant lignin content and composition on ionic liquid pretreatment efficiency and enzymatic saccharification of Eucalyptus globulus L. mutants, Bioresource Technology. 117 (2012) 352–359.

DOI: https://doi.org/10.1016/j.biortech.2012.04.065

[137] D. Yuan et al., Aviable method and configuration for fermenting biomass sugars to ethanol using native Saccharomyces cerevisiae, Bioresource Technology. 117 (2012) 92–98.

DOI: https://doi.org/10.1016/j.biortech.2012.04.005

[138] Lee JW, Gwak KS, Park JY, et al. (2007). Biological pretreatment of softwood pinus densiflora by three white rot fungi'. J. Microbiol, 45,485-491.

[139] Qiu Z, Aita GM, and Walker MS, Effect of ionic liquid pretreatment on the chemical composition, structure and enzymatic hydrolysis of energy cane bagasse, Bioresource Technology, vol. 117, p.251–256, (2012).

DOI: https://doi.org/10.1016/j.biortech.2012.04.070

[140] Perez-Pimienta JA, Lopez-Ortega MG, Varanasi P, Vitalie S, Gang C, Seema S, Blake AS, Comparison of the impact of ionic liquid pretreatment on recalcitrance of agave bagasse and switchgrass, Bioresource Technology, vol. 127, p.18–24, (2013).

DOI: https://doi.org/10.1016/j.biortech.2012.09.124

[141] Muhammad N, Man Z, Bustam MA, Mutalib MIA, Wilfred CD, and Rafiq S, "Dissolution and delignification of bamboo biomass using amino acid-based ionic liquid, Applied Biochemistry and Biotechnology, vol. 165, no. 3-4, p.998–1009, (2011).

DOI: https://doi.org/10.1007/s12010-011-9315-y

[142] Zhi-Guo Z and Hong-Zhang C, Enhancement of the enzymatic hydrolysis of wheat straw by pretreatment with 1-allyl- 3-methylimidazolium chloride ([Amim]Cl) African Journal of Biotechnology, vol. 11, no. 31, p.8032–8037, (2012).

DOI: https://doi.org/10.5897/ajb11.3583

[143] Hou XD, Smith TJ, Li N, Zong MH (2012) Novel renewable ionic liquids as highly effective solvents for pretreatment of rice straw biomass by selective removal of lignin. Biotechnol Bioeng 109:2484–2493.

DOI: https://doi.org/10.1002/bit.24522

[144] Ninomiya K, Yamauchi T, Kobayashi M, Chiaki O, Nobuaki , Kenji T, "Cholinium carboxylate ionic liquids for pretreatment of lignocellulosic materials to enhance subsequent enzymatic saccharification,Biochemical Engineering Journal, vol. 71, p.25–29, (2013).

DOI: https://doi.org/10.1016/j.bej.2012.11.012

[145] Wang X, Li H, Cao Y, Tang Q (2011). Cellulose extraction from wood chip in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl). Bioresour Technol, 102: 7959–7965.

DOI: https://doi.org/10.1016/j.biortech.2011.05.064

[146] Brandt A, Ray MJ, To TQ, Leak DJ, Murphy RJ, Welton T (2011). Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid–water mixtures.Green Chemistry,13:2489–2499.

DOI: https://doi.org/10.1039/c1gc15374a

[147] Sun N, Rahman M, Qin Y, Maxim ML, Rodríguez H, Rogers RD (2009). Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl- 3-methylimidazolium acetate. Green Chemistry , 11: 646–655.

DOI: https://doi.org/10.1039/b822702k

[148] Shamsuri AA, Abdullah DK (2010). Isolation and characterization of lignin from rubber wood in ionic liquid medium. Modern Applied Sci, 4: 19 – 27.

DOI: https://doi.org/10.5539/mas.v4n11p19

[149] Lynam JG, Toufiq Reza M, Vasquez VR, Coronella CJ (2012). Pretreatment of rice hulls by ionic liquid dissolution. Bioresour Technol , 114: 629 – 636.

DOI: https://doi.org/10.1016/j.biortech.2012.03.004

[150] Dibble DC, Li C, Sun L, George A, Cheng A, Çetinkol ÖP, Benke P, Holmes BM, Singh S, Simmons BA (2011). A facile method for the recovery of ionic liquid and lignin from biomass pretreatment. Green Chemistry 2011, 13: 3255 –3264.

DOI: https://doi.org/10.1039/c1gc15111h

[151] Garc´ıa-Cubero MT, Gonz´alez-Benito G, Indacoechea I, Coca M, and Bolado S, Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw, Bioresource Technology, vol. 100, no. 4, p.1608–1613, (2009).

DOI: https://doi.org/10.1016/j.biortech.2008.09.012

[152] Sannigrahi P, Hu F, Pu Y, and Ragauskasa A, Novel oxidative pretreatment of Loblolly Pine, Sweetgum, and Miscanthus by ozone, Journal of Wood Chemistry and Technology, vol. 32, p.361–375, (2012).

DOI: https://doi.org/10.1080/02773813.2012.698691

[153] Schultz-Jensen N, K´ad´ar Z, Thomsen AB, Bindslev H, and Leipold F, Plasma-assisted pretreatment of wheat straw for ethanol production, Applied Biochemistry and Biotechnology, vol. 165, no. 3-4, p.1010–1023, (2011).

DOI: https://doi.org/10.1007/s12010-011-9316-x

[154] Travaini R, Otero MD, Coca M, Da-Silva R, and Bolado S, "Sugarcane bagasse ozonolysis pretreatment: effect on enzymatic digestibility and inhibitory compound formation, Bioresource Technology, vol. 133, p.332–339, (2013).

DOI: https://doi.org/10.1016/j.biortech.2013.01.133

[155] C.K. Nitsos et al., Optimization of Hydrothermal Pretreatment of Lignocellulosic Biomass in the Bioethanol Production, Process Chem. Sus. Chem. 6 (2013) 110–122.

[156] Muhammad Saif Ur Rehman, Ilgook Kim, Yusuf Chisti, Jong-In Han. Use of ultrasound in the production of bioethanol from lignocellulosic biomass (2013) Energy Education Science and Technology Part A: Energy Science and Research, 30(2), 1391-1410.

[157] L´opez-Linares JC, Romero I, Moya M, Cara C, Ruiz E, Castro E, Pretreatment of olive tree biomass with FeCl3 prior enzymatic hydrolysis, Bioresource Technology, vol. 128, p.180–187, (2013).

DOI: https://doi.org/10.1016/j.biortech.2012.10.076

[158] H. Li, J. Xu, Optimization of microwave-assisted calcium chloride pretreatment of corn stover, Bioresource Technology. 127 (2013) 112–118.

DOI: https://doi.org/10.1016/j.biortech.2012.09.114

[159] Kurakake M, Ide N, Komaki T.. Biological pretreatment with two bacterial strains for enzymatic hydrolysis of office paper, Curr. Microbiol. 54 (2007) 424-428.

DOI: https://doi.org/10.1007/s00284-006-0568-6

[160] Yengkhom Disco Singh, Pinakeswar Mahanta, Utpal Bora (2017) Comprehensive characterization of lignocellulosic biomass through proximate, ultimate and compositional analysis for bioenergy production, Renewable Energy 103 (2017) 490-500.

DOI: https://doi.org/10.1016/j.renene.2016.11.039

[161] Schurz J. Bioconversion of Cellulosic Substances into Energy Chemicals and Microbial Protein Symp. Proc.; Ghose, T. K.; Ed.; New Delhi, IIT: Delhi, 1978; p.37.

[162] Ander P, Eriksson K.-E. Lignin degradation and utilization by microorganisms. In: Bull M J (Ed.), editor. Progress in Industrial Microbiology. Amsterdam: Vol. 14, Elsevier, 1978; pp.1-58.

[163] Hwang S S, Lee S J, Kim H K, Ka JO, Kim KJ, Song HG. Biodegradation and saccharification of wood chips of Pinus strobus and Liriodendron tulipifera by white rot fungi. J Microbiol Biotechnol, 2008; 18: 1819-1825.

DOI: https://doi.org/10.4014/jmb.0800.231

[164] F.A. Keller, J.E. Hamilton, Q.A. Nguyen, Microbial pretreatment of biomass-potential for reducing severity of thermochemical biomass pretreatment, Appl. Biochem. Biotechnol. 105 (2003) 27-41.

DOI: https://doi.org/10.1385/abab:105:1-3:27

[165] Zhang XY, Yu HB, Huang HY, et al. Evaluation of biological pretreatment with white rot fungi for the enzymatic hydrolysis of bamboo culms. Int Biodeterior Biodegrad, 2007; 60: 159-164.

DOI: https://doi.org/10.1016/j.ibiod.2007.02.003

[166] C.C. Geddes et al., Optimizing the saccharification of cane bagasse using dilute phosphoric acid followed by sugar fungal cellulose, Bioresour. Technol. 101 (2010) 1851-1857.

DOI: https://doi.org/10.1016/j.biortech.2009.09.070

[167] I. Romero et al., Ethanolic fermentation of phosphoric acid hydrolysates from olive tree pruning, Ind. Crop Prod, 25 (2007) 160-168.

DOI: https://doi.org/10.1016/j.indcrop.2006.08.008

[168] I.U. Nieves et al., Injection of air into the headspace improves fermentation of phosphoric acid pretreated sugarcane bagasse by Escherichia coli MM170, Bioresour Technol. (2011).

DOI: https://doi.org/10.1016/j.biortech.2011.04.036

[169] Gauss WF, Suzuki S, Takagi M .(1976). Manufacture of alcohol from cellulosic materials using plural ferments'. U.S. Patent No. 3990944.

[170] Huff GF, Yata N.(1976). Enzymatic hydrolysis of cellulose'. U.S. Patent No.3990945.

[171] Neves MA, Shimizu N, Kimura T, Shiiba K. (2007). Kinetics of bioethanol production from wheat milling by-products'. Journal of Food Process Engineering, in press.

[172] Geddes CC, Mullinnix MT, Nieves IU, Peterson JJ, Hoffman RW, York SW, Yomano LP, Miller EN, Shanmugam KT, Ingram LO. (2011).

[173] Zhou SD, Ingram LO. (2001). Simultaneous saccharification and fermentation of amorphous cellulose to ethanol by recombinant Klebsiella oxytoca SZ21 without supplemental cellulase'. Biotechnol Lett, 23, 1455-1462.

[174] C.E. Wyman et al., Comparative sugar recovery and fermentation data following pretreatment of poplar wood by leading technologies'. Biotechnol prog, 25 (2009) 333-339.

DOI: https://doi.org/10.1002/btpr.142

[175] Wen F, Sun J, Zhao H., Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol, Appl. Environ. Microbiol. 76 (2010) 1251-1260.

DOI: https://doi.org/10.1128/aem.01687-09

[176] S. Morais et al., Cellulase-xylanase synergy in designer cellulosomes for enhanced degradation of a complex cellulosic substrate, mBio, 1 (2010) e00285-00210.

DOI: https://doi.org/10.1128/mbio.00285-10

[177] J.B. Kristensen, C. Felby, H. Jorgensen, Yield-determining factors in high- solids enzymatic hydrolysis of lignocellulose, Biotechnol Biofuels. 2 (2009) 11.

DOI: https://doi.org/10.1186/1754-6834-2-11

[178] K. Karolina et al., Key issues in modeling and optimization of lignocellulosic biomass fermentative conversion to gaseous biofuels. Renewable Energy 129 (2018) 384-408.

DOI: https://doi.org/10.1016/j.renene.2018.06.018

[179] B. Chiara et al., Influence of feedstock, catalyst, pyrolysis and hydrotreatment temperature on the composition of upgraded oils from intermediate pyrolysis. Biomass and Bioenergy 116 (2018) 236–248.

DOI: https://doi.org/10.1016/j.biombioe.2018.06.022

[180] K. Pasi et al., Fine grinding of wood – Overview from wood breakage to applications. Biomass and Bioenergy 113 (2018) 31–44.

DOI: https://doi.org/10.1016/j.biombioe.2018.03.007
Show More Hide
Cited By:
This article has no citations.