On the Jackson-Type Inequality for the Best S^p-Approximations of Functions by Trigonometric Polynomials

Alexander N. Shchitov

Dnipro, Ukraine
an_shchitov@rambler.ru

Keywords: best approximations, Jackson-type inequality, trigonometric polynomials, sharp constant, modulus of continuity, S^p spaces, L_2 space.

Abstract. We find the sharp constant in the Jackson-type inequality between the value of the best approximation of functions by trigonometric polynomials and moduli of continuity of m-th order in the spaces S^p, $1 \leq p < \infty$. In the particular case we obtain one result which in a certain sense generalizes the result obtained by L.V. Taykov for $m = 1$ in the space L_2 for the arbitrary moduli of continuity of m-th order ($m \in \mathbb{N}$).

Introduction

Trigonometric polynomials are the object of the study for a long time. The significant results in the approximation theory were obtained by Jackson. He proved that for an arbitrary 2π-periodic continuous function the following inequality holds

$$E_{n-1}(f)_C \leq K \omega(f; \frac{1}{n}) ,$$

where

$$E_{n-1}(f)_C = \inf \left\{ \| f - T_{n-1} \|_C : T_{n-1} \in \mathcal{T}_{n-1} \right\}$$

is the value of the best approximation of function f by the subspace T_{n-1} of trigonometric polynomials of degree $n - 1$ in the continuous metric;

$$\omega(f; t) = \sup \left\{ \| f(\cdot + h) - f(\cdot) \|_C : |h| \leq t \right\}$$

is the modulus of continuity of function f, and K is a constant which doesn’t depend on n and f. This inequality and analogous relations are known in the approximation theory as the Jackson-type inequalities. In approximation theory it is of importance to find the smallest constant from all possible ones in the Jackson-type inequalities. Such constants are called the sharp constants.

The questions of the obtaining the Jackson-type inequalities in case of approximation by trigonometric polynomials in the uniform and integral metrics were studied by many mathematicians, see for example the articles [1]-[25].

A.I. Stepanets in [26] introduced the normed spaces S^p ($1 \leq p < \infty$) of the integrable functions $f(x)$ having the period 2π for which

$$\| f \|_{S^p} \overset{df}{=} \left\{ \sum_{k \in \mathbb{Z}} |\hat{f}(k)|^p \right\}^{1/p} < \infty ,$$

where

$$\hat{f}(k) = (2\pi)^{-1/2} \int_{-\pi}^{\pi} f(x)e^{-ikx} \, dx$$

are the Fourier coefficients of the function $f(x)$ on the trigonometric system $(2\pi)^{-1/2}e^{ikx}$, $k \in \mathbb{Z}$. It was proved that the spaces S^p ($1 \leq p < \infty$) have the substantial properties of the Hilbert spaces, i.e. the minimal property of the partial Fourier sums. If

$$E_{n-1}(f)_{S^p} \overset{df}{=} \inf \left\{ \| f - T_{n-1} \|_{S^p} : T_{n-1} \in \mathcal{T}_{n-1} \right\}$$
is the value of the best approximation of function \(f(x) \in S^p \) by the subspace \(T_{n-1} \) of trigonometric polynomials of degree \(n - 1 \) in the metric of the space \(S^p \) then

\[
E_{n-1}(f)_{S^p} = \| f - s_{n-1}(f) \|_{S^p} = \left\{ \sum_{|k| \geq n} |\hat{f}(k)|^p \right\}^{1/p},
\]

(2)

where

\[
s_{n-1}(f, x) = (2\pi)^{-1/2} \sum_{|k| \leq n-1} \hat{f}(k)e^{ikx}
\]

is the partial sum of the Fourier series

\[
s(f, x) = (2\pi)^{-1/2} \sum_{k \in \mathbb{Z}} \hat{f}(k)e^{ikx}
\]

of function \(f(x) \in S^p \).

A.I. Stepanets stated in [26] that for \(p = 2 \) it is hold the equality

\[
\| f \|_{L_2} = \| f \|_{S^2}.
\]

Let

\[
\omega_m(f, t)_X = \sup \left\{ \| \Delta^m_h f(\cdot) \|_X : 0 < h \leq t \right\},
\]

(3)

is a modulus of continuity of order \(m \) of the function \(f(x) \in X \), where

\[
\Delta^m_h f(x) = \sum_{j=0}^{m} (-1)^{m-j} \binom{m}{j} f(x + jh)
\]

is a finite difference of order \(m \) of the function \(f(x) \) at the point \(x \) with the step \(h \). If \(X = L_p \) \((1 \leq p < \infty)\) then the value \(\omega_m(f, t)_{L_p} \) is the known integral modulus of continuity [27]. In case of \(X = S^p \) the modulus of continuity \(\omega_m(f, t)_{S^p} \) was introduced in the article [28].

Let \(\Psi(k) \) and \(\beta(k) \overset{\text{df}}{=} \beta_k \) \((k \in \mathbb{N})\) are the constrictions on \(\mathbb{N} \) of the arbitrary functions \(\Psi(x) \) and \(\beta(x) \) defined on the half-segment \([1, \infty)\). Let’s suppose that the series

\[
\sum_{k=1}^{\infty} \frac{1}{\Psi(k)} \left(a_k(f) \cos \left(kx + \frac{\beta_k \pi}{2} \right) + b_k(f) \sin \left(kx + \frac{\beta_k \pi}{2} \right) \right)
\]

is the Fourier series of some summable function which we denote by \(f_{\Psi}(x) \) according to [29]. The function \(f_{\Psi}(x) \) is called \((\Psi, \beta)\)-derivative of the function \(f(x) \). The concept of the \((\Psi, \beta)\)-derivative is the generalization of the definition of the \(r\)-th derivative of function. When \(\Psi(k) = k^{-r} \) \((0 < r < \infty)\) and \(\beta(k) = r \) then the \(r\)-th derivative of the function \(f(x) \) differs from the \((k^{-r}, r)\)-derivative only on the constant value.

Let \(L^r_{\Psi}(S^p) \) is the set of integrable functions \(f(x) \) having the period \(2\pi \) which have the \((\Psi, \beta)\)-derivatives. Also let \(L^r_{\Psi}(S^p) \) is the set of the functions \(f(x) \in L^r_{\Psi} \) such that their \((\Psi, \beta)\)-derivatives belong to the space \(S^p \). If \(\Psi(k) = k^{-r} \) \((0 < r < \infty)\) and \(\beta(k) = r \) then we use notation \(L^r(S^p); L^r_2 \equiv L^r(S^2) \).

A lot of articles are devoted to solving problems of approximation theory in the spaces \(S^p \) \((1 \leq p < \infty)\). For example, in the articles [30]-[36] were studied the approximation properties of trigonometric system and were solved several problems on obtaining the Jackson-type inequalities

\[
E_{n-1}(f)_{S^p} \leq \chi(t) \cdot n^{-r} \omega_m(f^{(r)}, \frac{t}{n})_{S^p} \quad (t > 0)
\]

and finding the sharp constants for the fixed values of \(m, n, t \) and \(p \), that is the values
\[
\chi_{n,m}(t)_{Sp} = \sup \left\{ E_{n-1}(f)_{Sp} : f \in L^r(S^p), f \not= \text{const} \right\} (t > 0).
\]

We assume that the ratio 0/0 is equal to zero.

Let’s define the following notation
\[
\chi_{n,(\Psi,\beta),m,p,l}(\mathcal{F}, t; S^p) \equiv \sup_{f(x) \notin \text{const}} \frac{n^{-1}E_{n-1}(f)_{Sp}}{\Psi(n)} \left(\int_0^t \omega^p_m(f^{(n)}_{\beta}, x)_{Sp} \mathcal{F}(x) dx \right)^{1/p}.
\]

In the spaces S^p the values of the type (4) were studied by A.I. Stepanets, A.S. Serduk [28] \(\chi_{n,(1,0),m,p,1/p}(\mathcal{F}, \frac{\pi}{n}; S^p), \mathcal{F}(x) = \sin(nx)\), A.S. Serduk [31] \(\chi_{n,(\Psi,\beta),m,p,1/\psi}(\mathcal{F}, \frac{\pi}{n}; S^p), \mathcal{F}(x) = \sin(nx)\); \(\chi_{n,(\Psi,\beta),m,p,1}(\mathcal{F}, t; S^p), \mathcal{F}(x) \equiv 1, 0 < t \leq \frac{3\pi}{4}\), S.B. Vakarchuk [33] \(\chi_{n,(\Psi,\beta),m,p,0}(\mathcal{F}, t; S^p), \mathcal{F}(x) \equiv 1, 0 < t \leq \frac{\pi}{n}\). The analogous to (4) values were considered by B.P. Voychivskiy [34], S.B. Vakarchuk and A.N. Shchitov [35].

In the article [36] were obtained the exact values of extremal characteristics of a special form between the values of best polynomial approximations of functions $E_{n-1}(f)_{Sp}$ and moduli of continuity of m-th order $\omega_m(f^{(n)}_{\beta}, t)_{Sp}$. The asymptotically sharp inequalities of Jackson type between the values $E_{n-1}(f)_{Sp}$ and moduli of continuity of functions $f(x) \in S^p$ were found in the article [36].

The aim of the current study is the obtaining of the sharp constant in the Jackson-type inequality between the value of the best approximation of functions from the class $L^p_m(S^p)$ by trigonometric polynomials $E_{n-1}(f)_{Sp}$ and moduli of continuity of m-th order $\omega_m(f^{(n)}_{\beta}, t)_{Sp}$ in the spaces S^p, $1 \leq p < \infty$.

Sharp constant in the Jackson-type inequality for the best approximation of functions $f(x) \in S^p$

Further we suppose that the function $\Psi(x)$ \(1 \leq x < \infty\) is the positive function which monotonically decreases to zero with increasing of x.

Sharp constant in the Jackson-type inequality for the best S^p-approximation of functions by trigonometric polynomials is found in the next theorem.

Theorem 1. For the arbitrary numbers $n, m \in \mathbb{N}$, $0 < \tau \leq \frac{3\pi}{4n}$ and $1 \leq p < \infty$ the following equality holds
\[
\sup_{f(x) \notin \text{const}} \left\{ \frac{E_{n-1}(f)_{Sp}}{\int_0^\pi \omega^2_m(f_{\beta}^{(n)}, h)_{Sp} dh} \right\}^{1/2} = \Psi(n) \left\{ \frac{1}{2(n \tau - \sin n \tau)} \right\}^{n/2}.
\]

Proof. Using following
\[
a_k(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx dx;
\]
\[
b_k(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx dx (k \in \mathbb{Z}+),
\]
we can write the Fourier coefficients (1) in the form
\[
\hat{f}(k) = \left(\frac{\pi}{2} \right)^{1/2} (a_{|k|}(f) - ib_{|k|}(f) \text{sgn } k) \quad (k \in \mathbb{Z}).
\]
Then the relation (2) can be written in the next form

\[E_{n-1}(f)_S = \left(\frac{\pi}{2} \right)^{1/2} \left\{ 2 \sum_{k=n}^{\infty} \rho_k^p(f) \right\}^{1/p}, \quad (7) \]

where

\[\rho_k(f) \overset{df}{=} \sqrt{a_k^2(f) + b_k^2(f)}. \]

It is known [29] that Fourier coefficients of the functions \(f(x) \) and \(f^\psi_\pi(x) \) are connected by the formula

\[
\begin{align*}
\{ a_k(f) &= \Psi(k) \left(a_k(f^\psi_\pi) \cos \frac{\beta_k \pi}{2} - b_k(f^\psi_\pi) \sin \frac{\beta_k \pi}{2} \right), \\
b_k(f) &= \Psi(k) \left(a_k(f^\psi_\pi) \sin \frac{\beta_k \pi}{2} + b_k(f^\psi_\pi) \cos \frac{\beta_k \pi}{2} \right). \}
\end{align*}
\quad (8)
\]

From (6) and (8) we have

\[\hat{f}(k) = e^{-i \beta_k \pi \text{sgn}(k)/2} \Psi(|k|) \hat{f}^\psi(k) \quad (k \in \mathbb{Z}\setminus\{0\}). \quad (9) \]

In the article [28] it was shown that for an arbitrary function \(f(x) \in S^p \) \((1 \leq p < \infty)\)

\[\| \Delta^m_h f(\cdot) \|_{S^p}^p = 2^{mp/2} \sum_{k \in \mathbb{Z}} |\hat{f}(k)|^p (1 - \cos k h)^{mp/2}. \quad (10) \]

Using (6) and (10) we write

\[\left\| \Delta^m_h f^\psi_\pi(\cdot) \right\|_{S^p}^p = \pi^{p/2} 2^{1+(m-1)p/2} \sum_{k=1}^{\infty} \rho_k^p(f^\psi_\pi)(1 - \cos k h)^{mp/2}. \quad (11) \]

From the (9) it immediately follows the equation

\[\rho_k(f) = \Psi(k) \rho_k(f^\psi_\pi). \]

Then using the last equation from the (11) we have

\[\left\| \Delta^m_h f^\psi_\pi(\cdot) \right\|_{S^p}^p = \pi^{p/2} 2^{1+(m-1)p/2} \sum_{k=1}^{\infty} \frac{1}{\Psi^p(k)} \rho_k^p(f)(1 - \cos k h)^{mp/2}. \quad (12) \]

Using (7) we can write

\[E_{n-1}^p(f)_S = \left(\frac{\pi}{2} \right)^{p/2} 2^{p} \sum_{k=n}^{\infty} \rho_k^p(f) \cos kh = \]

\[\left(\frac{\pi}{2} \right)^{p/2} 2^{p} \sum_{k=n}^{\infty} \rho_k^{p-2/m}(f) \rho_k^{2/m}(f)(1 - \cos kh) \cdot \quad (13) \]

Applying the Holder’s inequality to the right part of the (13), using (2), (12), definition of the modulus of continuity of the \(m \)-th order and the decreasing character of the function \(\Psi(x) \), from the (13) we get
\[E_{n-1}^p(f)_{S^p} - \left(\frac{\pi}{2} \right)^{p/2} 2 \sum_{k=n}^{\infty} \rho_k^p(f) \cos kh \]

\[\leq \left(\frac{\pi}{2} \right)^{p/2} 2 \sum_{k=n}^{\infty} \rho_k^p(f) \left\{ \sum_{k=n}^{\infty} \rho_k^p(f)(1 - \cos kh)^{mp/2} \right\}^{2/(mp)} \]

\[\leq \left(\frac{\pi}{2} \right)^{1/m} \Psi^{2/m(n)} \left\{ e_{n-1}^p(f)_{S^p} \right\} \left\{ \sum_{k=n}^{\infty} \frac{1}{\psi_p(k)} \rho_k^p(f)(1 - \cos kh)^{mp/2} \right\}^{2/(mp)} \]

\[\leq \frac{1}{2} \Psi^{2/m(n)} \left\{ e_{n-1}^p(f)_{S^p} \right\} \omega_{m}^{2/m(f_{\Psi}^P, h)_{S^p}}. \quad (14) \]

Integrating the relation (14) by the variable \(h \) over the limits from 0 to \(\tau \) we have

\[\tau E_{n-1}^p(f)_{S^p} \leq \left(\frac{\pi}{2} \right)^{p/2} 2 \sum_{k=n}^{\infty} \rho_k^p(f) \frac{\sin k\tau}{k} \]

\[+ \frac{\Psi^{2/m(n)}}{2} \left\{ e_{n-1}^p(f)_{S^p} \right\} \omega_{m}^{2/m(f_{\Psi}^P, h)_{S^p}} \int_{0}^{\tau} dh. \quad (15) \]

In the [3] it was obtained the relation

\[\max_{n\tau < u} \left| \frac{\sin u}{u} \right| = \frac{\sin n\tau}{n\tau} \quad (0 < n\tau \leq \frac{3\pi}{4}). \quad (16) \]

Dividing the inequality (15) by \(\tau \) and taking into account (7) and (16) we have

\[E_{n-1}^p(f)_{S^p} \leq \frac{\sin n\tau}{n\tau} E_{n-1}^p(f)_{S^p} \]

\[+ \frac{\Psi^{2/m(n)}}{2\tau} \left\{ e_{n-1}^p(f)_{S^p} \right\} \omega_{m}^{2/m(f_{\Psi}^P, h)_{S^p}} dh. \quad (17) \]

Therefore from (17) we get

\[E_{n-1}(f)_{S^p} \leq \Psi(n) \left\{ \frac{n}{2(n\tau - \sin n\tau)} \right\}^{m/2} \left\{ \int_{0}^{\tau} \omega_{m}^{2/m(f_{\Psi}^P, h)_{S^p}} dh \right\}^{m/2}. \quad (18) \]

From (18) for an arbitrary \(0 < \tau \leq \frac{3\pi}{4n} \) we have the upper bound

\[\sup_{f(x) \in L_{p}^{\Psi}(S^p)} \frac{E_{n-1}(f)_{S^p}}{\left\{ \int_{0}^{\tau} \omega_{m}^{2/m(f_{\Psi}^P, h)_{S^p}} dh \right\}^{m/2}} \leq \Psi(n) \left\{ \frac{n}{2(n\tau - \sin n\tau)} \right\}^{m/2}. \quad (19) \]

To obtain the lower bound we consider the function

\[\tilde{f}(x) = \sqrt{2/\pi} \cos(nx), \]

which belongs to the class \(L_{p}^{\Psi}(S^p) \).

Based on the (7) we have

\[E_{n-1}(\tilde{f})_{S^p} = 2^{1/p}. \quad (20) \]
For \((\Psi, \beta)\)-derivative of the function \(\tilde{f}\)

\[
\tilde{f}^{\Psi}_{\beta}(x) = \sqrt{2/\pi} \Psi^{-1}(n) \cos(nx + \beta_n \pi/2)
\]
due to (11) and definition of the modulus of continuity of order \(m\) for \(0 < t \leq \frac{\pi}{n}\) we can write

\[
\omega_m(\tilde{f}^{\Psi}_{\beta}, t)_{Sp} = 2^{1/p + m/2} \frac{1}{\Psi(n)} (1 - \cos nt)^{m/2}.
\] \((21)\)

From the (21) for \(0 < t \leq \frac{\pi}{n}\) we obtain

\[
\left\{ \int_0^t \omega_m^{2/m}(f^{\Psi}_{\beta}, h)_{Sp} dh \right\}^{m/2} = \frac{1}{\Psi(n)} 2^{1/p + m/2} \left\{ \tau - \frac{1}{n} \sin n\tau \right\}^{m/2}.
\] \((22)\)

Then taking into account (20) and (22) we get

\[
\sup_{f(x) \in L^p_{\Psi}(Sp), f(x) \neq \text{const}} \frac{E_{n-1}(f)_{Sp}}{\left\{ \int_0^t \omega_m^{2/m}(f^{\Psi}_{\beta}, h)_{Sp} dh \right\}^{m/2}} \geq \frac{E_{n-1}(\tilde{f})_{Sp}}{\left\{ \int_0^t \omega_m^{2/m}(\tilde{f}^{\Psi}_{\beta}, h)_{Sp} dh \right\}^{m/2}} = \Psi(n) \left\{ \frac{n}{2(n\tau - \sin n\tau)} \right\}^{m/2}.
\] \((23)\)

From the upper bound (19) and lower bound (23) it follows the equality (5). Theorem 1 is proved.

If \(\Psi(n) = n^{-r}, r \in \mathbb{Z}_+\), then from the theorem it follows the next result.

Theorem 2. Let \(r \in \mathbb{Z}_+\) and \(n, m \in \mathbb{N}\). Then for an arbitrary \(0 < \tau \leq \frac{3\pi}{4n}\) the following equality holds

\[
\sup_{f(x) \in L^p_{\Psi}(Sp), f(x) \neq \text{const}} \frac{n^r E_{n-1}(f)_{L^2}}{\left\{ \int_0^\tau \omega_m^{2/m}(f^{(r)}_{\beta}, h)_{L^2} dh \right\}^{m/2}} = \left\{ \frac{n}{2(n\tau - \sin n\tau)} \right\}^{m/2}.
\]

The result of the theorem 2 in a certain sense generalizes for the arbitrary modulus of continuity of \(m\)-th order \(\omega_m(f^{(r)}; t)_{L^2}\) the result obtained by L.V. Taykov for the case \(m = 1\) in the article [3].

Conclusions

For the functions from the class \(L^p_{\Psi}(Sp)\) \((1 \leq p < \infty)\) the sharp constant in the Jackson-type inequality between the value of the best approximation \(E_{n-1}(f)_{Sp}\) of functions by trigonometric polynomials and moduli of continuity of \(m\)-th order \(\omega_m(f^{\Psi}_{\beta}, t)_{Sp}\) in the spaces \(Sp\) has been found.

From the obtained result it follows the statement which in a certain sense generalizes for the arbitrary modulus of continuity of \(m\)-th order \(\omega_m(f^{(r)}; t)_{L^2}\) \((m \in \mathbb{N})\) the result obtained by L.V. Taykov for \(m = 1\) in the space \(L^2\).
References

