On the Jackson-Type Inequality for the Best S^p-Approximations of Functions by Trigonometric Polynomials

Alexander N. Shchitov

Dnipro, Ukraine
an_shchitov@rambler.ru

Keywords: best approximations, Jackson-type inequality, trigonometric polynomials, sharp constant, modulus of continuity, S^p spaces, L_2 space.

Abstract. We find the sharp constant in the Jackson-type inequality between the value of the best approximation of functions by trigonometric polynomials and moduli of continuity of m-th order in the spaces S^p, $1 \leq p < \infty$. In the particular case we obtain one result which in a certain sense generalizes the result obtained by L.V. Taykov for $m = 1$ in the space L_2 for the arbitrary moduli of continuity of m-th order ($m \in \mathbb{N}$).

Introduction

Trigonometric polynomials are the object of the study for a long time. The significant results in the approximation theory were obtained by Jackson. He proved that for an arbitrary 2π-periodic continuous function the following inequality holds

$$E_{n-1}(f)_{C} \leq K\omega(f; \frac{1}{n}),$$

where

$$E_{n-1}(f)_{C} = \inf \{ \| f - T_{n-1} \|_{C} : T_{n-1} \in T_{n-1} \}$$

is the value of the best approximation of function f by the subspace T_{n-1} of trigonometric polynomials of degree $n - 1$ in the continuous metric;

$$\omega(f; t) = \sup \{ \| f(\cdot + h) - f(\cdot) \|_{C} : |h| \leq t \}$$

is the modulus of continuity of function f, and K is a constant which doesn’t depend on n and f. This inequality and analogous relations are known in the approximation theory as the Jackson-type inequalities. In approximation theory it is of importance to find the smallest constant from all possible ones in the Jackson-type inequalities. Such constants are called the sharp constants.

The questions of the obtaining the Jackson-type inequalities in case of approximation by trigonometric polynomials in the uniform and integral metrics were studied by many mathematicians, see for example the articles [1]-[25].

A.I. Stepanets in [26] introduced the normed spaces S^p ($1 \leq p < \infty$) of the integrable functions $f(x)$ having the period 2π for which

$$\| f \|_{S^p} \overset{df}{=} \left\{ \sum_{k \in \mathbb{Z}} |\widehat{f}(k)|^p \right\}^{1/p} < \infty,$$

where

$$\widehat{f}(k) = (2\pi)^{-1/2} \int_{-\pi}^{\pi} f(x)e^{-ikx}dx$$

are the Fourier coefficients of the function $f(x)$ on the trigonometric system $(2\pi)^{-1/2}e^{ikx}, k \in \mathbb{Z}$. It was proved that the spaces S^p ($1 \leq p < \infty$) have the substantial properties of the Hilbert spaces, i.e. the minimal property of the partial Fourier sums. If

$$E_{n-1}(f)_{S^p} \overset{df}{=} \inf \{ \| f - T_{n-1} \|_{S^p} : T_{n-1} \in T_{n-1} \}$$
is the value of the best approximation of function \(f(x) \in S^p \) by the subspace \(T_{n-1} \) of trigonometric polynomials of degree \(n - 1 \) in the metric of the space \(S^p \) then

\[
E_{n-1}(f)_{S^p} = \| f - s_{n-1}(f) \|_{S^p} = \left\{ \sum_{|k| \geq n} |\widehat{f}(k)|^p \right\}^{1/p},
\]

(2)

where

\[
s_{n-1}(f, x) = (2\pi)^{-1/2} \sum_{|k| \leq n-1} \widehat{f}(k) e^{ikx}
\]
is the partial sum of the Fourier series

\[
s(f, x) = (2\pi)^{-1/2} \sum_{k \in \mathbb{Z}} \widehat{f}(k) e^{ikx}
\]
of function \(f(x) \in S^p \).

A.I. Stepanets stated in [26] that for \(p = 2 \) it is hold the equality

\[
\| f \|_{L^2} = \| f \|_{S^2}.
\]

Let

\[
\omega_m(f, t)_X = \sup \left\{ \| \Delta_h^m f(\cdot) \|_X : 0 < h \leq t \right\},
\]

(3)
is a modulus of continuity of order \(m \) of the function \(f(x) \in X \), where

\[
\Delta_h^m f(x) = \sum_{j=0}^{m} (-1)^{m-j} \binom{m}{j} f(x + jh)
\]
is a finite difference of order \(m \) of the function \(f(x) \) at the point \(x \) with the step \(h \). If \(X = L_p \) \((1 \leq p < \infty)\) then the value \(\omega_m(f, t)_{L_p} \) is the known integral modulus of continuity [27]. In case of \(X = S^p \) the modulus of continuity \(\omega_m(f, t)_{S^p} \) was introduced in the article [28].

Let \(\Psi(k) \) and \(\beta(k) \equiv \beta_k \ (k \in \mathbb{N}) \) are the constrictions on \(\mathbb{N} \) of the arbitrary functions \(\Psi(x) \) and \(\beta(x) \) defined on the half-segment \([1, \infty)\). Let’s suppose that the series

\[
\sum_{k=1}^{\infty} \frac{1}{\Psi(k)} \left(a_k(f) \cos(kx + \frac{\beta_k \pi}{2}) + b_k(f) \sin(kx + \frac{\beta_k \pi}{2}) \right)
\]
is the Fourier series of some summable function which we denote by \(f_{\Psi}^\beta(x) \) according to [29]. The function \(f_{\Psi}^\beta(x) \) is called \((\Psi, \beta)\)-derivative of the function \(f(x) \). The concept of the \((\Psi, \beta)\)-derivative is the generalization of the definition of the \(r \)-th derivative of function. When \(\Psi(k) = k^{-r} \ (0 < r < \infty) \) and \(\beta(k) = r \) then the \(r \)-th derivative of the function \(f(x) \) differs from the \((k^{-r}, r)\)-derivative only on the constant value.

Let \(L^\Psi_{\beta}(S^p) \) is the set of integrable functions \(f(x) \) having the period \(2\pi \) which have the \((\Psi, \beta)\)-derivatives. Also let \(L^\Psi_{\beta}(S^p) \) is the set of the functions \(f(x) \in L^\Psi_{\beta} \) such that their \((\Psi, \beta)\)-derivatives belong to the space \(S^p \). If \(\Psi(k) = k^{-r} \ (0 < r < \infty) \) and \(\beta(k) = r \) then we use notation \(L^r(S^p); L^r_2 \equiv L^r(S^2) \).

A lot of articles are devoted to solving problems of approximation theory in the spaces \(S^p \) \((1 \leq p < \infty)\). For example, in the articles [30]-[36] were studied the approximation properties of trigonometric system and were solved several problems on obtaining the Jackson-type inequalities

\[
E_{n-1}(f)_{S^p} \leq \chi(t) \cdot n^{-r} \omega_m(f^{(r)}, \frac{t}{n})_{S^p} \quad (t > 0)
\]

and finding the sharp constants for the fixed values of \(m, n, t \) and \(p \), that is the values
\begin{align*}
X_{n,m}(t)_{S^p} &= \sup \left\{ \frac{E_{n-1}(f)_{S^p}}{\omega_m(f; \frac{t}{n})_{S^p}} : f \in L^r(S^p), f \neq \text{const} \right\} (t > 0) .
\end{align*}

We assume that the ratio 0/0 is equal to zero.

Let’s define the following notation
\begin{align*}
\chi_{n,\Psi, \beta} m, p, l (F, t; S^p) &= \sup_{f(x) \in \mathcal{L}_m^p (S^p) \cap \delta \neq \text{const}} \frac{n^{-1}E_{n-1}(f)_{S^p}}{\Psi(n)} \left(\int_0^t \omega_m(f^{\Psi, \beta}_t, x)_{S^p} F(x) dx \right)^{1/p}.
\end{align*}

In the spaces S^p the values of the type (4) were studied by A.I. Stepanets, A.S. Serduk [28] \(\chi_{n, (1, 0), m, p, 1/p} (F; \frac{\tau}{n}; S^p), F(x) = \sin(nx) \), A.S. Serduk [31] \(\chi_{n, (\Psi, r), m, p, 1/p} (F; \frac{\tau}{n}; S^p), F(x) = \sin(nx) \); $\chi_{n, (\Psi, r), m, p, 1} (F, t; S^p), F(x) \equiv 1, 0 < t \leq \frac{3\pi}{4} \), S.B. Vakarchuk [33] \(\chi_{n, (\Psi, \beta), m, p, 0} (F, t; S^p), F(x) \equiv 1, 0 < t \leq \frac{\pi}{n} \). The analogous to (4) values were considered by B.P. Voychehivskiy [34], S.B. Vakarchuk and A.N. Shchitov [35].

In the article [36] were obtained the exact values of extremal characteristics of a special form between the values of best polynomial approximations of functions $E_{n-1}(f)_{S^p}$ and moduli of continuity of m-th order $\omega_m(f^{\Psi, \beta}_t, t)_{S^p}$. The asymptotically sharp inequalities of Jackson type between the values $E_{n-1}(f)_{S^p}$ and moduli of continuity of functions $f(x) \in S^p$ were found in the article [36].

The aim of the current study is the obtaining of the sharp constant in the Jackson-type inequality between the value of the best approximation of functions from the class $L^p_{\Psi} (S^p)$ by trigonometric polynomials $E_{n-1}(f)_{S^p}$ and moduli of continuity of m-th order $\omega_m(f^{\Psi, \beta}_t, t)_{S^p}$ in the spaces S^p, $1 \leq p < \infty$.

Sharp constant in the Jackson-type inequality for the best approximation of functions $f(x) \in S^p$

Further we suppose that the function $\Psi(x)$ \((1 \leq x < \infty) \) is the positive function which monotonically decreases to zero with increasing of x.

Sharp constant in the Jackson-type inequality for the best S^p-approximation of functions by trigonometric polynomials is found in the next theorem.

Theorem 1. For the arbitrary numbers $n, m \in \mathbb{N}$, $0 < \tau \leq \frac{3\pi}{4n}$ and $1 \leq p < \infty$ the following equality holds
\begin{align*}
\sup_{f(x) \in \mathcal{L}_m^p (S^p) \cap \delta \neq \text{const}} \frac{E_{n-1}(f)_{S^p}}{\frac{n}{2(n\tau - \sin n\tau)}} = \Psi(n) \left\{ \frac{n}{\int_0^\tau \omega_m^{2/m} (f^{\Psi, \beta}_t, h)_{S^p} dh} \right\}^{1/2} .
\end{align*}

Proof. Using following
\begin{align*}
a_k(f) &= \frac{1}{\pi} \int_{-\pi}^\pi f(x) \cos kxdx ; \\
b_k(f) &= \frac{1}{\pi} \int_{-\pi}^\pi f(x) \sin kxdx \ (k \in \mathbb{Z}_+),
\end{align*}
we can write the Fourier coefficients (1) in the form
\begin{align*}
\hat{f}(k) &= \left(\frac{\pi}{2} \right)^{1/2} \left(a_k(f) - ib_k(f) \text{sgn} k \right) \ (k \in \mathbb{Z}).
\end{align*}
Then the relation (2) can be written in the next form

\[E_{n-1}(f)_{sp} = \left(\frac{\pi}{2} \right)^{1/2} \left\{ 2 \sum_{k=n}^{\infty} \rho_k^p(f) \right\}^{1/p}, \]

(7)

where

\[\rho_k(f) \overset{\text{df}}{=} \sqrt{a_k^2(f) + b_k^2(f)}. \]

It is known [29] that Fourier coefficients of the functions \(f(x) \) and \(f^\Psi_p(x) \) are connected by the formula

\[
\begin{align*}
 a_k(f) &= \Psi(k) \left(a_k(f^\Psi_p) \cos \frac{\beta_k \pi}{2} - b_k(f^\Psi_p) \sin \frac{\beta_k \pi}{2} \right), \\
 b_k(f) &= \Psi(k) \left(a_k(f^\Psi_p) \sin \frac{\beta_k \pi}{2} + b_k(f^\Psi_p) \cos \frac{\beta_k \pi}{2} \right).
\end{align*}
\]

(8)

From (6) and (8) we have

\[
\hat{f}(k) = e^{-i\beta_k \pi \text{sgn}(k)/2} \Psi(|k|) \hat{f^\Psi_p}(k) \quad (k \in \mathbb{Z}\setminus\{0\}).
\]

(9)

In the article [28] it was shown that for an arbitrary function \(f(x) \in S^p \) (1 \(\leq \) \(p < \infty \))

\[
\| \nabla^m_{ul} f(\cdot) \|_{sp}^p = 2^{mp/2} \sum_{k \in \mathbb{Z}} |\hat{f}(k)|^p (1 - \cos kh)^{mp/2}.
\]

(10)

Using (6) and (10) we write

\[
\| \nabla^m_{ul} f^\Psi_p(\cdot) \|_{sp}^p = \pi^{p/2} 2^{1+(m-1)p/2} \sum_{k=1}^{\infty} \rho_k^p(f^\Psi_p)(1 - \cos kh)^{mp/2}.
\]

(11)

From the (9) it immediately follows the equation

\[\rho_k(f) = \Psi(k) \rho_k(f^\Psi_p). \]

Then using the last equation from the (11) we have

\[
\| \nabla^m_{ul} f^\Psi_p(\cdot) \|_{sp}^p = \pi^{p/2} 2^{1+(m-1)p/2} \sum_{k=1}^{\infty} \frac{1}{\Psi_p(k)} \rho_k^p(f)(1 - \cos kh)^{mp/2}.
\]

(12)

Using (7) we can write

\[
E_{n-1}(f)_{sp} - \left(\frac{\pi}{2} \right)^{p/2} 2 \sum_{k=n}^{\infty} \rho_k^p(f) \cos kh =
\]

\[
= \left(\frac{\pi}{2} \right)^{p/2} 2 \sum_{k=n}^{\infty} \rho_k^{p-2/m}(f) \rho_k^{2/m}(f)(1 - \cos kh).
\]

(13)

Applying the Holder’s inequality to the right part of the (13), using (2), (12), definition of the modulus of continuity of the \(m \)-th order and the decreasing character of the function \(\Psi(x) \), from the (13) we get
\[
E_{n-1}^p(f)_{Sp} - \left(\frac{\pi}{2}\right)^{p/2} 2 \sum_{k=n}^{\infty} \rho_k^p(f) \cos kh \\
\leq \left(\frac{\pi}{2}\right)^{p/2} 2 \left\{ \sum_{k=n}^{\infty} \rho_k^p(f) \right\}^{1-2/mp} \left\{ \sum_{k=n}^{\infty} \rho_k^p(f)(1 - \cos kh)^{mp/2} \right\}^{2/(mp)} \\
\leq \left(\frac{\pi}{2}\right)^{1/m} \Psi^{2/m(n)} E_{n-1}^{p-2/m}(f)_{Sp} \left\{ \sum_{k=n}^{\infty} \frac{1}{\psi_p(k)} \rho_k^p(f)(1 - \cos kh)^{mp/2} \right\}^{2/(mp)} \\
\leq \frac{1}{2} \Psi^{2/m(n)} E_{n-1}^{p-2/m}(f)_{Sp} \omega_m^{2/m}(f_{\Psi}^\tau, h)_{Sp}.
\]

Integrating the relation (14) by the variable \(h \) over the limits from 0 to \(\tau \) we have

\[
\tau E_{n-1}^p(f)_{Sp} \leq \left(\frac{\pi}{2}\right)^{p/2} 2 \sum_{k=n}^{\infty} \rho_k^p(f) \frac{\sin k\tau}{k} \\
+ \frac{\Psi^{2/m(n)}}{2} E_{n-1}^{p-2/m}(f)_{Sp} \int_0^\tau \omega_m^{2/m}(f_{\Psi}^\tau, h)_{Sp} dh.
\]

In the [3] it was obtained the relation

\[
\max_{n\tau \leq u} \left| \frac{\sin u}{u} \right| = \frac{\sin n\tau}{n\tau} \quad (0 < n\tau \leq \frac{3\pi}{4}).
\]

Dividing the inequality (15) by \(\tau \) and taking into account (7) and (16) we have

\[
E_{n-1}^p(f)_{Sp} \leq \frac{\sin n\tau}{n\tau} E_{n-1}^p(f)_{Sp} \\
+ \frac{\Psi^{2/m(n)}}{2n} E_{n-1}^{p-2/m}(f)_{Sp} \int_0^\tau \omega_m^{2/m}(f_{\Psi}^\tau, h)_{Sp} dh.
\]

Therefore from (17) we get

\[
E_{n-1}(f)_{Sp} \leq \Psi(n) \left\{ \frac{n}{2(n\tau - \sin n\tau)} \right\}^{m/2} \left\{ \int_0^\tau \omega_m^{2/m}(f_{\Psi}^\tau, h)_{Sp} dh \right\}^{m/2}.
\]

From (18) for an arbitrary \(0 < \tau \leq \frac{3\pi}{4n} \) we have the upper bound

\[
\sup_{f(x) \in L_p^{\Psi}(Sp)} \frac{E_{n-1}(f)_{Sp}}{\int_0^\tau \omega_m^{2/m}(f_{\Psi}^\tau, h)_{Sp} dh} \leq \Psi(n) \left\{ \frac{n}{2(n\tau - \sin n\tau)} \right\}^{m/2}.
\]

To obtain the lower bound we consider the function

\[
\tilde{f}(x) = \sqrt{2/\pi} \cos(nx),
\]

which belongs to the class \(L_p^{\Psi}(Sp) \).

Based on the (7) we have

\[
E_{n-1}(\tilde{f})_{Sp} = 2^{1/p}.
\]
For \((\Psi, \beta)\)-derivative of the function \(\hat{f}\)
\[
\hat{f}_\beta^\Psi(x) = \sqrt{2/\pi} \Psi^{-1}(n) \cos(nx + \beta_n \pi/2)
\]
due to (11) and definition of the modulus of continuity of order \(m\) for \(0 < t \leq \frac{\pi}{n}\) we can write
\[
\omega_m(\hat{f}_\beta^\Psi, t)_{S^p} = 2^{1/p + m/2} \frac{1}{\Psi(n)} (1 - \cos nt)^{m/2}.
\]
(21)

From the (21) for \(0 < t \leq \frac{\pi}{n}\) we obtain
\[
\{ \int_0^\tau \omega_m^{2/m}(\hat{f}_\beta^\Psi, h)_{S^p} \, dh \}^{m/2} = \frac{1}{\Psi(n)} 2^{1/p + m/2} \{ \tau - \frac{1}{n} \sin n\tau \}^{m/2}.
\]
(22)

Then taking into account (20) and (22) we get
\[
\sup_{f(r) \in L^2(S^p)} \frac{E_{n-1}(f)_{S^p}}{\{ \int_0^\tau \omega_m^{2/m}(f(r), h)_{L^2} \, dh \}^{m/2}} \geq \frac{E_{n-1}(\hat{f})_{S^p}}{\{ \int_0^\tau \omega_m^{2/m}(\hat{f}_\beta^\Psi, h)_{S^p} \, dh \}^{m/2}}
\]
\[
= \Psi(n) \left(\frac{n}{2(n\tau - \sin n\tau)} \right)^{m/2}.
\]
(23)

From the upper bound (19) and lower bound (23) it follows the equality (5). Theorem 1 is proved.

If \(\Psi(n) = n^{-\tau}, r \in \mathbb{Z}_+\), then from the theorem 1 it follows the next result.

Theorem 2. Let \(r \in \mathbb{Z}_+\) and \(n, m \in \mathbb{N}\). Then for an arbitrary \(0 < \tau \leq \frac{3\pi}{4n}\) the following equality holds
\[
\sup_{f(\tau) \in L^2(S^p)} \frac{n^\tau E_{n-1}(f)_{L^2}}{\{ \int_0^\tau \omega_m^{2/m}(f(\tau), h)_{L^2} \, dh \}^{m/2}} = \left\{ \frac{n}{2(n\tau - \sin n\tau)} \right\}^{m/2}.
\]

The result of the theorem 2 in a certain sense generalizes for the arbitrary modulus of continuity of \(m\)-th order \((m \in \mathbb{N})\) one result obtained by L.V. Taykov for the case \(m = 1\) in the article [3].

Conclusions

For the functions from the class \(L^p(S^p)\) \((1 \leq p < \infty)\) the sharp constant in the Jackson-type inequality between the value of the best approximation \(E_{n-1}(f)_{S^p}\) of functions by trigonometric polynomials and moduli of continuity of \(m\)-th order \(\omega_m(f^\psi, t)_{S^p}\) in the spaces \(S^p\) has been found.

From the obtained result it follows the statement which in a certain sense generalizes for the arbitrary modulus of continuity of \(m\)-th order \(\omega_m(f^\psi, t)_{L^2}\) \((m \in \mathbb{N})\) the result obtained by L.V. Taykov for \(m = 1\) in the space \(L^2\).
References

