On the Jackson-Type Inequality for the Best S^p-Approximations of Functions by Trigonometric Polynomials

Alexander N. Shchitov

Dnipro, Ukraine
an_shchitov@rambler.ru

Keywords: best approximations, Jackson-type inequality, trigonometric polynomials, sharp constant, modulus of continuity, S^p spaces, L_2 space.

Abstract. We find the sharp constant in the Jackson-type inequality between the value of the best approximation of functions by trigonometric polynomials and moduli of continuity of m-th order in the spaces S^p, $1 \leq p < \infty$. In the particular case we obtain one result which in a certain sense generalizes the result obtained by L.V. Taykov for $m = 1$ in the space L_2 for the arbitrary moduli of continuity of m-th order ($m \in \mathbb{N}$).

Introduction

Trigonometric polynomials are the object of the study for a long time. The significant results in the approximation theory were obtained by Jackson. He proved that for an arbitrary 2π-periodic continuous function the following inequality holds

$$E_{n-1}(f)_C \leq K\omega(f; \frac{1}{n}),$$

where

$$E_{n-1}(f)_C = \inf \{ \|f - T_{n-1}\|_C : T_{n-1} \in T_{n-1} \}$$

is the value of the best approximation of function f by the subspace T_{n-1} of trigonometric polynomials of degree $n - 1$ in the continuous metric;

$$\omega(f; t) = \sup \{ \|f(\cdot + h) - f(\cdot)\|_C : |h| \leq t \}$$

is the modulus of continuity of function f, and K is a constant which doesn’t depend on n and f. This inequality and analogous relations are known in the approximation theory as the Jackson-type inequalities. In approximation theory it is of importance to find the smallest constant from all possible ones in the Jackson-type inequalities. Such constants are called the sharp constants.

The questions of the obtaining the Jackson-type inequalities in case of approximation by trigonometric polynomials in the uniform and integral metrics were studied by many mathematicians, see for example the articles [1]-[25].

A.I. Stepanets in [26] introduced the normed spaces S^p $(1 \leq p < \infty)$ of the integrable functions $f(x)$ having the period 2π for which

$$\|f\|_{S^p} \overset{df}{=} \left\{ \sum_{k \in \mathbb{Z}} |\hat{f}(k)|^p \right\}^{1/p} < \infty,$$

where

$$\hat{f}(k) = (2\pi)^{-1/2} \int_{-\pi}^{\pi} f(x)e^{-ikx}dx$$

are the Fourier coefficients of the function $f(x)$ on the trigonometric system $(2\pi)^{-1/2}e^{ikx}$, $k \in \mathbb{Z}$. It was proved that the spaces S^p $(1 \leq p < \infty)$ have the substantial properties of the Hilbert spaces, i.e. the minimal property of the partial Fourier sums. If

$$E_{n-1}(f)_{S^p} \overset{df}{=} \inf \{ \|f - T_{n-1}\|_{S^p} : T_{n-1} \in T_{n-1} \}$$
is the value of the best approximation of function $f(x) \in S^p$ by the subspace T_{n-1} of trigonometric polynomials of degree $n - 1$ in the metric of the space S^p then

$$E_{n-1}(f)_{S^p} = \|f - s_{n-1}(f)\|_{S^p} = \left\{ \sum_{|k| \leq n} |\hat{f}(k)|^p \right\}^{1/p},$$

(2)

where

$$s_{n-1}(f, x) = (2\pi)^{-1/2} \sum_{|k| \leq n-1} \hat{f}(k) e^{ikx}$$

is the partial sum of the Fourier series

$$s(f, x) = (2\pi)^{-1/2} \sum_{k \in \mathbb{Z}} \hat{f}(k) e^{ikx}$$

of function $f(x) \in S^p$.

A.I. Stepanets stated in [26] that for $p = 2$ it hold the equality

$$\|f\|_{L^2} = \|f\|_{S^2}.$$

Let

$$\omega_m(f, t)_X = \sup \left\{ \|\Delta_h^m f(\cdot)\|_X : 0 < h \leq t \right\},$$

(3)

is a modulus of continuity of order m of the function $f(x) \in X$, where

$$\Delta_h^m f(x) = \sum_{j=0}^m (-1)^{m-j} \binom{m}{j} f(x + jh)$$

is a finite difference of order m of the function $f(x)$ at the point x with the step h. If $X = L_p$ ($1 \leq p < \infty$) then the value $\omega_m(f, t)_{L_p}$ is the known integral modulus of continuity [27]. In case of $X = S^p$ the modulus of continuity $\omega_m(f, t)_{S^p}$ was introduced in the article [28].

Let $\Psi(k)$ and $\beta(k) \overset{df}{=} \beta_k$ ($k \in \mathbb{N}$) are the constrictions on \mathbb{N} of the arbitrary functions $\Psi(x)$ and $\beta(x)$ defined on the half-segment $[1, \infty)$. Let’s suppose that the series

$$\sum_{k=1}^{\infty} \frac{1}{\Psi(k)} \left(a_k(f) \cos \left(kx + \frac{\beta_k \pi}{2} \right) + b_k(f) \sin \left(kx + \frac{\beta_k \pi}{2} \right) \right)$$

is the Fourier series of some summable function which we denote by $f^{\Psi}_{\beta}(x)$ according to [29]. The function $f^{\Psi}_{\beta}(x)$ is called (Ψ, β)-derivative of the function $f(x)$. The concept of the (Ψ, β)-derivative is the generalization of the definition of the r-th derivative of function. When $\Psi(k) = k^{-r}$ ($0 < r < \infty$) and $\beta(k) = r$ then the r-th derivative of the function $f(x)$ differs from the (k^{-r}, r)-derivative only on the constant value.

Let $L^\Psi_{\beta}(S^p)$ is the set of integrable functions $f(x)$ having the period 2π which have the (Ψ, β)-derivatives. Also let $L^\Psi_{\beta}(S^p)$ is the set of the functions $f(x) \in L^\Psi_{\beta}$ such that their (Ψ, β)-derivatives belong to the space S^p. If $\Psi(k) = k^{-r}$ ($0 < r < \infty$) and $\beta(k) = r$ then we use notation $L^r(S^p); L^r_2 \equiv L^r(S^2)$.

A lot of articles are devoted to solving problems of approximation theory in the spaces S^p ($1 \leq p < \infty$). For example, in the articles [30]-[36] were studied the approximation properties of trigonometric system and were solved several problems on obtaining the Jackson-type inequalities

$$E_{n-1}(f)_{S^p} \leq \chi(t) \cdot n^{-r} \omega_m(f^{(r)}, \frac{t}{n})_{S^p} \quad (t > 0)$$

and finding the sharp constants for the fixed values of m, n, t and p, that is the values
\[\chi_{n,m}(t)_{S^p} = \sup \left\{ \frac{\mathcal{E}_{n-1}(f)_{S^p}}{\omega_m(f; \frac{t}{n})_{S^p}} : f \in L^r(S^p), f \not\equiv \text{const} \right\} (t > 0). \]

We assume that the ratio 0/0 is equal to zero.

Let’s define the following notation

\[\chi_{n,\beta,m,p,l}(F, t; S^p) \overset{df}{=} \sup_{f(x) \in L^c_{\alpha} (S^p)} \frac{n^{-l}\mathcal{E}_{n-1}(f)_{S^p}}{\Psi(n) \left(\int_0^t \omega_m^{\beta}(f, \frac{r}{n}, x)_{S^p} F(x) dx \right)^{1/p}}. \tag{4} \]

In the spaces \(S^p \) the values of the type (4) were studied by A.I. Stepanets, A.S. Serdük [28] \(\chi_{n,(1,0),m,p,1/p}(F, \frac{\pi}{n}; S^p), F(x) = \sin(nx) \), A.S. Serdük [31] \(\chi_{n,(\Psi, r),m,p,1/p}(F, \frac{\pi}{n}; S^p), F(x) = \sin(nx) \); \(\chi_{n,(\Psi, r),m,p,1}(F, t; S^p), F(x) \equiv 1, 0 < t \leq \frac{3\pi}{4} \), S.B. Vakarchuk [33] \(\chi_{n,(\Psi, \beta),m,p,0}(F, t; S^p), F(x) \equiv 1, 0 < t \leq \frac{\pi}{n} \). The analogous to (4) values were considered by B.P. Voychëvskyi [34], S.B. Vakarchuk and A.N. Shchitov [35].

In the article [36] were obtained the exact values of extremal characteristics of a special form between the values of best polynomial approximations of functions \(\mathcal{E}_{n-1}(f)_{S^p} \) and moduli of continuity of \(m \)-th order \(\omega_m(f^{(\beta)}, t)_{S^p} \). The asymptotically sharp inequalities of Jackson type between the values \(\mathcal{E}_{n-1}(f)_{S^p} \) and moduli of continuity of functions \(f(x) \in S^p \) were found in the article [36].

The aim of the current study is the obtaining of the sharp constant in the Jackson-type inequality between the value of the best approximation of functions from the class \(L^{\Psi}_{\beta}(S^p) \) by trigonometric polynomials \(\mathcal{E}_{n-1}(f)_{S^p} \) and moduli of continuity of \(m \)-th order \(\omega_m(f^{(\beta)}, t)_{S^p} \) in the spaces \(S^p, 1 \leq p < \infty \).

Sharp constant in the Jackson-type inequality for the best approximation of functions \(f(x) \in S^p \)

Further we suppose that the function \(\Psi(x) (1 \leq x < \infty) \) is the positive function which monotonically decreases to zero with increasing of \(x \).

Sharp constant in the Jackson-type inequality for the best \(S^p \)-approximation of functions by trigonometric polynomials is found in the next theorem.

Theorem 1. *For the arbitrary numbers \(n, m \in \mathbb{N}, 0 < \tau \leq \frac{3\pi}{4n} \) and \(1 \leq p < \infty \) the following equality holds*

\[\sup_{f(x) \in L^{\Psi}_{\beta}(S^p)} \left\{ \frac{\mathcal{E}_{n-1}(f)_{S^p}}{\int_0^\pi \omega_m^{\beta}(f, \frac{r}{n}, x)_{S^p} dh} \right\}^{m/2} = \Psi(n) \left\{ \frac{n}{2(n\tau - \sin n\tau)} \right\}^{m/2}. \tag{5} \]

Proof. Using following

\[a_k(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx dx; \]

\[b_k(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx dx \quad (k \in \mathbb{Z}_+), \]

we can write the Fourier coefficients (1) in the form

\[\hat{f}(k) = \left(\frac{\pi}{2} \right)^{1/2} \left(a_{|k|}(f) - ib_{|k|}(f) \text{sgn } k \right) \quad (k \in \mathbb{Z}). \tag{6} \]
Then the relation (2) can be written in the next form

\[E_{n-1}(f)_{S^p} = \left(\frac{\pi}{2} \right)^{1/2} \left\{ 2 \sum_{k=n}^{\infty} \rho_k^p(f) \right\}^{1/p}, \quad (7) \]

where

\[\rho_k(f) \triangleq \sqrt{a_k^2(f) + b_k^2(f)}. \]

It is known [29] that Fourier coefficients of the functions \(f(x) \) and \(f^\Psi_{\pi}(x) \) are connected by the formula

\[
\begin{align*}
 a_k(f) &= \Psi(k) \left(a_k(f^\Psi_{\pi}) \cos \frac{\beta_k \pi}{2} - b_k(f^\Psi_{\pi}) \sin \frac{\beta_k \pi}{2} \right), \\
 b_k(f) &= \Psi(k) \left(a_k(f^\Psi_{\pi}) \sin \frac{\beta_k \pi}{2} + b_k(f^\Psi_{\pi}) \cos \frac{\beta_k \pi}{2} \right).
\end{align*}
\]

From (6) and (8) we have

\[\hat{\Delta}(k) = e^{-i \beta_k \pi \text{sgn}(k)/2} \Psi(|k|) \hat{f}^\Psi_{\pi}(k) \quad (k \in \mathbb{Z}\setminus\{0\}). \]

In the article [28] it was shown that for an arbitrary function \(f(x) \in S^p \) \((1 \leq p < \infty)\)

\[\| \Delta_h^m f(\cdot) \|^p_{S^p} = 2^{mp/2} \sum_{k \in \mathbb{Z}} |\hat{f}(k)|^p (1 - \cos kh)^{mp/2}. \]

Using (6) and (10) write

\[\| \Delta_h^m f^\Psi_{\pi}(\cdot) \|^p_{S^p} = \pi^{p/2} 2^{1+(m-1)p/2} \sum_{k=1}^{\infty} \rho_k^p(f^\Psi_{\pi})(1 - \cos kh)^{mp/2}. \]

From the (9) it immediately follows the equation

\[\rho_k(f) = \Psi(k) \rho_k(f^\Psi_{\pi}). \]

Then using the last equation from the (11) we have

\[\| \Delta_h^m f^\Psi_{\pi}(\cdot) \|^p_{S^p} = \pi^{p/2} 2^{1+(m-1)p/2} \sum_{k=1}^{\infty} \frac{1}{\Psi(p)(k)} \rho_k^p(f)(1 - \cos kh)^{mp/2}. \]

Using (7) we can write

\[\mathcal{E}_{n-1}^p(f)_{S^p} - \left(\frac{\pi}{2} \right)^{p/2} 2 \sum_{k=n}^{\infty} \rho_k^p(f) \cos kh = \]

\[= \left(\frac{\pi}{2} \right)^{p/2} 2 \sum_{k=n}^{\infty} \rho_k^{p-2/m}(f) \rho_k^{2/m}(f)(1 - \cos kh). \]

Applying the Holder’s inequality to the right part of the (13), using (2), (12), definition of the modulus of continuity of the \(m \)-th order and the decreasing character of the function \(\Psi(x) \), from the (13) we get
\[
E_{n-1}^p(f)_{Sp} - \left(\frac{\pi}{2} \right)^{p/2} 2 \sum_{k=n}^{\infty} \rho_k^p(f) \cos kh
\]

\[
\leq \left(\frac{\pi}{2} \right)^{p/2} 2 \left\{ \sum_{k=n}^{\infty} \rho_k^p(f) \right\}^{1-2/mp} \left\{ \sum_{k=n}^{\infty} \rho_k^p(f)(1 - \cos kh)^{mp/2} \right\}^{2/(mp)}
\]

\[
\leq \left(\frac{\pi}{2} \right)^{1/m} \Psi^{2/m(n)} E_{n-1}^{p-2/m}(f)_{Sp} \left\{ \sum_{k=n}^{\infty} \frac{1}{\Psi_p(k)} \rho_k^p(f)(1 - \cos kh)^{mp/2} \right\}^{2/(mp)}
\]

\[
\leq \frac{1}{2} \Psi^{2/m(n)} E_{n-1}^{p-2/m}(f)_{Sp} \omega_m^{2/m}(f_{\psi}, h)_{Sp}.
\] \hspace{1cm} (14)

Integrating the relation (14) by the variable \(h \) over the limits from 0 to \(\tau \) we have

\[
\tau E_{n-1}^p(f)_{Sp} \leq \left(\frac{\pi}{2} \right)^{p/2} 2 \sum_{k=n}^{\infty} \rho_k^p(f) \sin \frac{k\tau}{k}
\]

\[
+ \frac{\Psi^{2/m(n)}}{2} E_{n-1}^{p-2/m}(f)_{Sp} \int_0^\tau \omega_m^{2/m}(f_{\psi}, h)_{Sp} dh.
\] \hspace{1cm} (15)

In the [3] it was obtained the relation

\[
\max_{n\tau \leq u} \left| \frac{\sin u}{u} \right| = \frac{\sin n\tau}{n\tau} \quad (0 < n\tau \leq \frac{3\pi}{4}).
\] \hspace{1cm} (16)

Dividing the inequality (15) by \(\tau \) and taking into account (7) and (16) we have

\[
E_{n-1}^p(f)_{Sp} \leq \frac{\sin n\tau}{n\tau} E_{n-1}^p(f)_{Sp}
\]

\[
+ \frac{\Psi^{2/m(n)}}{2\tau} E_{n-1}^{p-2/m}(f)_{Sp} \int_0^\tau \omega_m^{2/m}(f_{\psi}, h)_{Sp} dh.
\] \hspace{1cm} (17)

Therefore from (17) we get

\[
E_{n-1}(f)_{Sp} \leq \Psi(n) \left\{ \frac{n}{2(n\tau - \sin n\tau)} \right\}^{m/2} \left\{ \int_0^\tau \omega_m^{2/m}(f_{\psi}, h)_{Sp} dh \right\}^{m/2}.
\] \hspace{1cm} (18)

From (18) for an arbitrary \(0 < \tau \leq \frac{3\pi}{4n} \) we have the upper bound

\[
\sup_{f(x) \in L^p(\Gamma)} \frac{E_{n-1}(f)_{Sp}}{\int_0^{\tau} \omega_m^{2/m}(f_{\psi}, h)_{Sp} dh} \leq \Psi(n) \left\{ \frac{n}{2(n\tau - \sin n\tau)} \right\}^{m/2}.
\] \hspace{1cm} (19)

To obtain the lower bound we consider the function

\[
\widetilde{f}(x) = \sqrt{2/\pi} \cos(nx),
\]

which belongs to the class \(L^p(\Gamma) \).

Based on the (7) we have

\[
E_{n-1}(\widetilde{f})_{Sp} = 2^{1/p}.
\] \hspace{1cm} (20)
For \((\Psi, \beta)\)-derivative of the function \(\mathcal{f}\)

\[
\mathcal{f}_\Psi^{\beta}(x) = \sqrt{2/\pi} \Psi^{-1}(n) \cos(nx + \beta n\pi/2)
\]

due to (11) and definition of the modulus of continuity of order \(m\) for \(0 < t \leq \frac{\pi}{n}\) we can write

\[
\omega_m(\mathcal{f}_\Psi^{\beta}, t)_{S^p} = 2^{1/p + m/2} \frac{1}{\Psi(n)} (1 - \cos nt)^{m/2}.
\]

(21)

From the (21) for \(0 < t \leq \frac{\pi}{n}\) we obtain

\[
\left\{ \int_0^\pi \omega_m^{2/m}(\mathcal{f}_\Psi^{\beta}, h)_{S^p} \, dh \right\}^{m/2} = \frac{1}{\Psi(n)} 2^{1/p + m/2} \left\{ \tau - \frac{1}{n} \sin n\tau \right\}^{m/2}.
\]

(22)

Then taking into account (20) and (22) we get

\[
\sup_{f(x) \in L_2^p(S^p) \atop f(x) \not\equiv 0} \frac{E_{n-1}(f)_{S^p}}{\left\{ \int_0^\pi \omega_m^{2/m}(f^{\Psi}, h)_{S^p} \, dh \right\}^{m/2}} \geq \frac{E_{n-1}(\mathcal{f})_{S^p}}{\left\{ \int_0^\pi \omega_m^{2/m}(\mathcal{f}_\Psi^{\beta}, h)_{S^p} \, dh \right\}^{m/2}} = \Psi(n) \left\{ \frac{n}{2(n\tau - \sin n\tau)} \right\}^{m/2}.
\]

(23)

From the upper bound (19) and lower bound (23) it follows the equality (5). Theorem 1 is proved.

If \(\Psi(n) = n^{-r}, r \in \mathbb{Z}_+\), then from the theorem 1 it follows the next result.

Theorem 2. Let \(r \in \mathbb{Z}_+\) and \(n, m \in \mathbb{N}\). Then for an arbitrary \(0 < \tau \leq \frac{3\pi}{4n}\) the following equality holds

\[
\sup_{f(x) \in L_2^p(S^p) \atop f(x) \not\equiv 0} \frac{n^r E_{n-1}(f)_{L_2}}{\left\{ \int_0^\pi \omega_m^{2/m}(f^{(r)}, h)_{L_2} \, dh \right\}^{m/2}} = \left\{ \frac{n}{2(n\tau - \sin n\tau)} \right\}^{m/2}.
\]

The result of the theorem 2 in a certain sense generalizes for the arbitrary modulus of continuity of \(m\)-th order \(\omega_m(f^{(r)}, t)_{L_2}\) the result obtained by L.V. Taykov for the case \(m = 1\) in the article [3].

Conclusions

For the functions from the class \(L_2^p(S^p)\) \((1 \leq p < \infty)\) the sharp constant in the Jackson-type inequality between the value of the best approximation \(E_{n-1}(f)_{S^p}\) of functions by trigonometric polynomials and moduli of continuity of \(m\)-th order \(\omega_m(f^{(r)}, t)_{S^p}\) in the spaces \(S^p\) has been found.

From the obtained result it follows the statement which in a certain sense generalizes for the arbitrary modulus of continuity of \(m\)-th order \(\omega_m(f^{(r)}, t)_{L_2}\) \((m \in \mathbb{N})\) the result obtained by L.V. Taykov for \(m = 1\) in the space \(L_2\).
References

