This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] K.H. Maleknejad, A. Ebrahimzadeh, Optimal control of volterra integro-differential systems based on Legendre wavelets and collocation method, International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering. 8(7) (2014).
[2] V.V. Uchaikin, Fractional derivatives for physicists and engineers, Springer, Berlin, (2013).
[3] D. Baleanu et al., Fractional caculus, models and numerical methods, World Scientific, (2012).
[4] V.E. Tarasov, Review of some promising fractional physical models, International Journal of Modern Physics B. 27(9) (2013).
[5] W. Chen et al., Anomalous diffusion modeling by fractal and fractional derivatives, Computers and Mathematics with Applications. 59(5) (2010) 1754-1758.
DOI: https://doi.org/10.1016/j.camwa.2009.08.020[6] R. Metzler, W.G. Glöckle, T.F. Nonnenmacher, Fractional model equation for anomalous diffusion, Physica A: Statistical Mechanics and its Applications. 211(1) (1994) 13-24.
DOI: https://doi.org/10.1016/0378-4371(94)90064-7[7] R. Almeida, D.F. Torres, A discrete method to solve fractional optimal control problems, Nonlinear Dynamics. 80(4) (2015) 1811-1816.
DOI: https://doi.org/10.1007/s11071-014-1378-1[8] E. Ghomanjani, A numerical technique for solving fractional optimal control problems and fractional Riccati differential equations, Journal of the Egyptian Mathematical Society. 24(4) (2015) 638-643.
DOI: https://doi.org/10.1016/j.joems.2015.12.003[9] I. Podlubny, Fractional differential equations, Academic Press, (1999).
[10] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional integrals and derivatives, theory and applications, Gordon and Breach Science Publishers, (1993).
[11] I. Podlubny, Geometric and physical interpretations of fractional integration and fractional differentiation, Fractional Calculus and Applied Analysis. 5(4) (2002) 367-386.
[12] B. Ross, Fractional calculus and its applications, Lecture Notes in Mathematics, vol. 457, Springer-Verlag, New York, (1975).
[13] J.F. Gomez-Aguilar, R. Razo-Hern´andez, D. Granados-Lieberman, A physical interpretation of fractional calculus in observables terms: analysis of the fractional time constant and the transitory response, Revista Mexicana de F´ısica. 60 (2014).
[14] N. Heymann, I. Podlubny, Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives, Rheologica Acta. 45(5) (2006) 765-771.
DOI: https://doi.org/10.1007/s00397-005-0043-5[15] V.E. Tarasov, Fractional dynamics, Applications of fractional claculus to dynamics of particles fields and media, Springer Verlag, (2010).
[16] I.M. Ross, A primer on Pontryagin's principle in optimal control, Collegiate Publishers, (2015).
[17] G. Adomian, Solving frontier problems of physics: the decomposition method, Vol. 60, Springer Science & Business Media, (2013).