This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] J. H. He, Variational iteration method-a kind of non-linear analytical technique: some examples, Inter. J. Nonlin. Mech. 34(4) (1999) 699-708.
[2] R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett. 27(18) (1971) 1192.
[3] M. R. Miura, Backlund Transformation, Springer-Verlag, Berlin, (1978).
[4] Z. Yan, H. Zhang, Nonlinear wave agenda of similar reduction with damping term, Physics Journals. 49(11) (2000) 2113-2117.
[5] M. J. Ablowitz, P. A. Clarkson, Soliton, nonlinear evolution equation and inverse scattering, Cambridge University press, New York, (1991).
[6] P. D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure. Appl. Math. 21(5) (1968) 467-490.
[7] C. Yan, A simple transformation for nonlinear waves, Phys. Lett. A. 224(1) (1996) 77-84.
[8] S. Yu et al., Solitary wave solutions to approximate fully nonlinear double sine-Gordon equation, International Journal of Nonlinear Science. 3(3) (2007) 163-169.
[9] J. F. Zhang, Homogeneous balance method and chaotic and fractal solutions for the Nizhnik- Novikov-Veselov equation, Phys. Lett. A. 313(5) (2003) 401-407.
[10] P. G. Drazin, R. S. Johnson, Solitons: An Introduction, Cambridge University press, London, (1983).
[11] M. Lakshmanan, S. Rajasekar, Nonlinear dynamics : Integrability, Chaos and Patterns, Advanced Texts in Physics, Springer-Verlag, Berlin, (2003).
[12] J. P. Wang, A list of 1+ 1 dimensional integrable equations and their properties, Journal of Nonlinear Math. Phys. 9 (2002) 213-233.
[13] V.B. Matveev, Generalized Wronskian formula for solutions of the KdV equations: first applications, Phys. Lett. A. 166(3-4) (1992) 205-208.
[14] M.R. Gupta, Exact inverse scattering solution of a non-linear evolution equation in a non-uniform medium, Phys. Lett. A. 72(6) (1979) 420-422.
[15] M.J. Ablowitz et al., The Inverse Scattering Transform-Fourier Analysis for Nonlinear Problems, Stud. Appl. Math. 53(4) (1974) 249-315.
[16] M.J. Ablowitz et al., Nonlinear-evolution equations of physical significance, Phys. Rev. Lett. 31(2) (1973) 125.
[17] M.J. Ablowitz, J.F. Ladik, Nonlinear differential− difference equations, Journal of Mathematical Physics. 16(3) (1975) 598-603.
[18] W. Hua, D.J. Zhang, Strong Symmetries of Non-Isospectral Ablowitz-Ladik Equations, Chin. Phys. Lett. 28(2) (2011) 020203.
[19] H.H. Chen, C.S. Liu, Solitons in nonuniform media, Phys. Rev. Lett. 37(11) (1976) 693.
[20] R. Hirota, J. Satsuma, N-soliton solution of the K-dV equation with loss and nonuniformity terms, Journal of the Physical Society of Japan. 41 (1976) 2141.
[21] W.L. Chan. L. Kam-Shun, Nonpropagating solitons of the variable coefficient and nonisospectral Korteweg-de Vries equation, J. Math. Phys. 30(11) (1989) 2521-2526.
[22] J.B. Bi, Y.P. Sun, D.Y. Chen, Soliton Solutions for Nonisospectral AKNS Equation by Hirota's Method, Communications in Theoretical Physics. 45(3) (2006) 398.
[23] Z. Qiao, C. Cao, W. Strampp, Category of nonlinear evolution equtions, algebraic structure, and r-matrix, Unpublished paper.
[24] Z.T. Fu et al., New exact solutions to KdV equations with variable coefficients or forcing, Applied Mathematics and Mechanics. 25(1) (2004) 73-79.
[25] A. Biswas, Solitary wave solution for KdV equation with power-law nonlinearity and timedependent coefficients, Nonlinear Dynamics. 58(1-2) (2009) 345-348.
[26] A. Biswas, Solitary wave solution for the generalized KdV equation with time-dependent damping and dispersion, Communications in Nonlinear Science and Numerical Simulation. 14(9) (2009) 3503-3506.
[27] H. Ma, A. Deng, Y. Wang, Exact solution of a KdV equation with variable coefficients, Computers and Mathematics with Applications. 61(8) (2011) 2278-2280.
[28] S. Zhang, Application of Exp-function method to a KdV equation with variable coefficients, Phys. Lett. A. 365(5) (2007) 448-453.
[29] S.M. Yu, L.X. Tian, Generalized soliton solutions to generalized KdV equation with variable coefficients by Exp-function method, Journal of Physics: Conference Series. 96(1) (2008) 012022.
[30] S.F. Deng, Exact solutions for a nonisospectral and variable-coefficient kdv equation, Communications in Theoretical Physics. 43(6) (2005) 961.
[31] K. Pradhan, P. K. Panigrahi, Parametrically controlling solitary wave dynamics in the modified Korteweg-de Vries equation, Journal of Physics A: Mathematical and General. 39(20) (2006) L343.
[32] J. Li et al., Symbolic computation on integrable properties of a variable-coefficient Korteweg-de Vries equation from arterial mechanics and Bose-Einstein condensates, Physica Scripta. 75(3) (2007) 278.
[33] J. Li et al., Lax pair, Bäcklund transformation and N-soliton-like solution for a variablecoefficient Gardner equation from nonlinear lattice, plasma physics and ocean dynamics with symbolic computation, Journal of Mathematical Analysis and Applications. 336(2) (2007).
[34] X.L. Gai et al., On a variable-coefficient Korteweg-de Vries model in fluid-filled elastic tubes, Journal of Physics A: Mathematical and Theoretical. 43(45) (2010) 455205.
[35] Y. Jiang et al., Soliton solutions for a variable-coefficient Korteweg? de Vries equation in fluids and plasmas, Physica Scripta. 82(5) (2010) 055008.
[36] A.G. Johnpillai, C.M. Khalique, Group analysis of KdV equation with time dependent coefficients, Applied Mathematics and Computation. 216(12) (2010) 3761-3771.
[37] C.A.G. Sierra, On a KdV equation with higher-order nonlinearity: Traveling wave solutions, Journal of computational and applied mathematics. 235(17) (2011) 5330-5332.
[38] Y. Qin et al., Bell polynomial approach and N-soliton solutions for a coupled KdV-mKdV system, Communications in Theoretical Physics. 58(1) (2012) 73.
[39] Y. Jiang et al., Soliton solutions and integrability for the generalized variable-coefficient extended Korteweg-de Vries equation in fluids, Applied Mathematics Letters. 26(4) (2013) 402-407.
[40] Y.F. Xiao, H.L. Xue, The new multi-order exact solutions of some nonlinear evolution equations, Journal of Atomic and Molecular Sciences. 3 (2012) 136-151.
[1] V. Serkin, T. Belyaeva, "Novel conditions for soliton breathers of the complex modified Korteweg–de Vries equation with variable coefficients", Optik, Vol. 172, p. 1117, 2018
DOI: https://doi.org/10.1016/j.ijleo.2018.07.139