This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] G. H. Hardy, A theorem concerning trigonometrical series, J. London Math. Soc. S1-3 (1) (1928) 12-13. doi: 10. 1112/jlms/s1-3. 1. 12.
[2] G. H. Hardy, Some theorems concerning trigonometrical series of a special type, Proc. London Math. Soc. S2-32 (1) (1931) 441-448. doi: 10. 1112/plms/s2-32. 1. 441.
[3] S. Aljančić, R. Bojanić, M. Tomić, Sur le comportement asymtotique au voisinage de zéro des séries trigonométriques de sinus à coefficients monotones, Acad. Serbe Sci., Publ. Inst. Math. 10 (1956) 101-120.
[4] C. -H. Yong, On the asymptotic behavior of trigonometric series. I, J. Math. Anal. Appl. 33 (1971) 23-34. doi: 10. 1016/0022-247X(71)90178-8.
[5] C. -H. Yong, On the asymptotic behavior of trigonometric series. II, J. Math. Anal. Appl. 38 (1972) 1-14. doi: 10. 1016/0022-247X(72)90111-4.
[6] G. H. Hardy, W. W. Rogosinski, Notes on Fourier series. III. Asymptotic formulae for the sums of certain trigonometrical series, Quart. J. Math., Oxford Ser. 16 (1945) 49-58.
[7] J. R. Nurcombe, On trigonometric series with quasimonotone coefficients, J. Math. Anal. Appl. 178 (1) (1993) 63-69. doi: 10. 1006/jmaa. 1993. 1291.
[8] C. -P. Chen, L. Chen, Asymptotic behavior of trigonometric series with O-regularly varying quasimonotone coefficients, J. Math. Anal. Appl. 250 (1) (2000) 13-26. doi: 10. 1006/jmaa. 2000. 6952.
[9] C. -P. Chen, L. Chen, Asymptotic behavior of trigonometric series with O-regularly varying quasimonotone coefficients. II, J. Math. Anal. Appl. 245 (1) (2000) 297-301. doi: 10. 1006/jmaa. 2000. 6745.
[10] S. Tikhonov, Trigonometric series with general monotone coefficients, J. Math. Anal. Appl. 326 (1) (2007) 721-735. doi: 10. 1016/j. jmaa. 2006. 02. 053.
[11] A. Zygmund, Trigonometric series. Vol. I, II, 3rd Edition, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2002, with a foreword by Robert A. Fefferman.
[12] E. Yarovaya, Branching random walks with heavy tails, Comm. Statist. Theory Methods 42 (16) (2013) 3001-3010. doi: 10. 1080/03610926. 2012. 703282.
[13] E. B. Yarovaya, Criteria for transient behavior of symmetric branching random walks on Z and Z2, in: J. R. Bozeman, V. Girardin, C. H. Skiadas (Eds. ), New Perspectives on Stochastic Modeling and Data Analysis, ISAST Athens Greece, 2014, pp.283-294.
[14] V. S. Kozyakin, On the asymptotics of cosine series in several variables with power coefficients, Journal of Communications Technology and Electronics 60 (12) (2015) 1441-1444. doi: 10. 1134/S1064226915120165.
[1] A. Rytova, E. Yarovaya, "Survival analysis of particle populations in branching random walks", Communications in Statistics - Simulation and Computation, p. 1, 2019
DOI: https://doi.org/10.1080/03610918.2019.1618870[2] A. Rytova, E. Yarovaya, "Heavy-tailed branching random walks on multidimensional lattices. A moment approach", Proceedings of the Royal Society of Edinburgh: Section A Mathematics, p. 1, 2020
DOI: https://doi.org/10.1017/prm.2020.46[3] A. Rytova, E. Yarovaya, "Survival analysis of particle populations in branching random walks", Communications in Statistics - Simulation and Computation, Vol. 50, p. 3031, 2021
DOI: https://doi.org/10.1080/03610918.2019.1618870