This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] T.G. Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal., 65(2006), 1379-1393.
DOI: https://doi.org/10.1016/j.na.2005.10.017[2] V. Berinde and M. Borcut, Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces, Nonlinear Anal., 74(15) (2011), 4889-4897.
DOI: https://doi.org/10.1016/j.na.2011.03.032[3] B. C. Dhage, A study of some fixed point theorems, Ph.D. Thesis, Marathwada Univ. Aurangabad, India (1984).
[4] B. C. Dhage, Generalized metric space and mappings with fixed point, Bull. Cal. Math. Soc., 84 (1992) 329 – 336.
[5] S. Gähler, 2-metriche raume und ihre toplogische strukture. Maths. Nachr. , 26 (1963) 115-148.
[6] P. Kumar and A. Poonam, Fixed point theorem for α - ψ-contractive type mappings in 2-metric space, Inter.J. math. Trend. Tech. 10(1), (2014) 34-37.
[7] V. Lakshmikantham and L. Ciric, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal., 70(2009), 4341-4349.
DOI: https://doi.org/10.1016/j.na.2008.09.020[8] G.J. Mehta and M.L. Joshi, Coupled fixed point theorem in partially ordered complete metric space, Int. J. Pure Appl. Sci. Technol., 1(2) (2010), 87-96.
[9] Z. Mustafa and B. Sims, A new approach to generalize metric space, J. Roy. nonlinear convex anal. 7(2006) 289 – 297.
[10] Z. Mustafa, H. Obiedat and F. Awawdeh, Some common fixed point theorems for mapping on complete G-metric space, Fixed Point Theory Appl. 2008 (2008) Article ID 189870.
DOI: https://doi.org/10.1155/2008/189870[11] J.J. Nieto and R.R. Lopez, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Mats. Sinica (Engl. Ser. ), 23(12) (2007), 2205-2212.
DOI: https://doi.org/10.1007/s10114-005-0769-0[12] A.C.M. Ran and M.C.B. Reurings, A fixed point theorem in partially ordered sets and some applications to metric equations, Proc. Amer. Math. Soc., 132(2004), 1435-1443.
[13] Savitri and N. Hooda, On tripled fixed point theorem in partially ordered complete metric space, Int. J. Pure Appl. Sci. Technol., 20(1) (2014), 111-116.
[14] B. Samet, C. Vetro and P. Vetro, Fixed point theorem for α - ψ-contractive type mappings, Nonlinear Anal. 75(2012) 2154-2165.
DOI: https://doi.org/10.1016/j.na.2011.10.014[15] S. Sedghi, N. Shobe and H. Zhou, A common fixed point theorem in D*-metric space, Fixed Point Theory Appl. 2007 (2007) Article ID 027906.
DOI: https://doi.org/10.1155/2007/27906[16] S. Sedghi, N. Shobe and A. Aliouche, A generalization of fixed point theorem in S-metric space, Mat. Vesinik. 64(3), (2012) 258 -266.