This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] Lavrent'ev M.A. On the theory of conformal mappings. Tr. Fiz. -Mat. Inst. Akad. Nauk SSSR. 1934, (5), 159-245. (in Russian).
[2] Goluzin G.M. Geometric theory of functions of a complex variable. Nauka, Moscow, 1966. (in Russian).
[3] Bakhtina G.P. Variational methods and quadratic differentials in problems for disjoint domains. PhD thesis, Kiev, 1975. (in Russian).
[4] Bakhtin A.K., Bakhtina G.P., Zelinskii Yu.B. Topological-algebraic structures and geometric methods in complex analysis. Inst. Math. NAS Ukraine, Kiev, 2008. (in Russian).
[5] Dubinin V.N. Separating transformation of domains and problems of extremal division. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Ros. Akad. Nauk. 1988, (168), 48-66. (in Russian).
[6] Dubinin V.N. Method of symmetrization in the geometric theory of functions of a complex variable. Usp. Mat. Nauk. 1994, 49 1(295), 3-76.
[7] Bakhtin A.K. Inequalities for the inner radii of nonoverlapping domains and open sets. Ukr. Math. J. 2009, 61 (5), 716-733.
[8] Bakhtin A.K., Targonskii A.L. Extremal problems and quadratic differentials. Nonlin. Oscillations. 2005, 8 (3), 296-301.
[9] Targonskii A.L. Extremal problems of partially nonoverlapping domains on a Riemann sphere. Dop. NAN Ukr. 2008, (9), 31-36. (in Russian).
[10] Targonskii A.L. Extremal problems on the generalized (n; d)-equiangular system of points. Anal. St. 2014, XXII (2), 239-251.
[11] Dubinin V.N. Asymptotic representation of the modulus of a degenerating condenser and some its applications. Zap. Nauchn. Sem. Peterburg. Otdel. Mat. Inst. 1997, (237), 56-73. (in Russian).
[12] Dubinin V.N. Capacities of condensers and symmetrization in geometric function theory of complex variables. Dal'nayka, Vladivostok, 2009. (in Russian).
[13] Hayman W.K. Multivalent functions. Cambridge University, Cambridge, (1958).
[14] Jenkins J.A. Univalent functions and conformal mapping. Springer, Berlin, (1958).
[15] Kolbina L.I. Conformal mapping of the unit circle into nonoverlapping domains. Vest. Lening. Univ. 1995, 5, 37-43. (in Russian).
[1] A. Targonskii, I. Targonskaya, "On the one extremal problem with free poles system points on the rays", Lobachevskii Journal of Mathematics, Vol. 38, p. 525, 2017
DOI: https://doi.org/10.1134/S1995080217030234[2] A. Targonskii, I. Targonskaya, "Extremal Problems on the Generalized (l, d)-Equiangular System Points in the Case of Arbitrary Multidimensional Complex Spaces", International Journal of Advanced Research in Mathematics, Vol. 9, p. 44, 2017
DOI: https://doi.org/10.18052/www.scipress.com/IJARM.9.44[3] A. Targonskii, "An extremal problem for the nonoverlapping domains", Journal of Mathematical Sciences, Vol. 227, p. 98, 2017
DOI: https://doi.org/10.1007/s10958-017-3576-0[4] A. Targonskii, I. Targonskaya, "Extreme problem for partially nonoverlapping domains on a Riemann sphere", Journal of Mathematical Sciences, 2018
DOI: https://doi.org/10.1007/s10958-018-4060-1[5] A. Targonskii, "On the One Extremal Problem with the Free Poles on the Unit Circle", International Journal of Advanced Research in Mathematics, Vol. 6, p. 26, 2016
DOI: https://doi.org/10.18052/www.scipress.com/IJARM.6.26[6] A. Targonskii, "About One Extremal Problem for the Projections of Points on a Unit Circle", Journal of Mathematical Sciences, 2019
DOI: https://doi.org/10.1007/s10958-019-04409-4[7] A. Targonskii, I. Targonskaya, K. Vaschenko, "About one extremal problem for open sets and partially non-overlapping domains", Journal of Mathematical Sciences, 2019
DOI: https://doi.org/10.1007/s10958-019-04604-3[8] A. Targonskii, I. Targonskaya, K. Vaschenko, "About one extremal problem for open sets and partially non-overlapping domains", Ukrainian Mathematical Bulletin, Vol. 16, p. 228, 2019
DOI: https://doi.org/10.37069/1810-3200-2019-16-2-5[9] A. Targonskii, I. Targonskaya, "Extreme problem for a mosaic system of points", Journal of Mathematical Sciences, 2021
DOI: https://doi.org/10.1007/s10958-020-05180-7[10] A. Targonskii, I. Targonskaya, "Extreme problem for a mosaic system of points", Ukrainian Mathematical Bulletin, Vol. 17, p. 437, 2020
DOI: https://doi.org/10.37069/1810-3200-2020-17-3-8[11] A. Targonskii, "Estimates of generalized internal radii for polycylindrical domains", Journal of Mathematical Sciences, 2022
DOI: https://doi.org/10.1007/s10958-022-05812-0[12] A. Targonskii, "Estimates of generalized internal radii for polycylindrical domains", Journal of Mathematical Sciences, Vol. 262, p. 222, 2022
DOI: https://doi.org/10.1007/s10958-022-05812-0[13] A. Targonskii, "Estimates of generalized internal radii for polycylindrical domains", Ukrainian Mathematical Bulletin, Vol. 19, p. 121, 2022
DOI: https://doi.org/10.37069/1810-3200-2022-19-1-8