Paper Titles in Periodical
International Journal of Advanced Research in Mathematics
IJARM Vol. 13
Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

IJARM > IJARM Vol. 13 > Effect of Oblateness of the Secondary up to J4 on...
< Back to Volume

Effect of Oblateness of the Secondary up to J4 on L4,5 in the Photogravitaional ER3BP

Full Text PDF

Abstract:

In a synodic-pulsating dimensionless coordinate, with a luminous primary and an oblate secondary, we examine the effects of radiation pressure, oblateness (quadruple and octupolar i.e. ) and eccentricity of the orbits of the primaries on the triangular points in the ER3BP. have been shown to disturb the motion of an infinitesimal body and particularly has significant effects on a satellite’s secular perturbation and orbital precessions. The influence of these parameters on the triangular points of Zeta Cygni, 54 Piscium and Procyon A/B are highlighted in this study. Triangular points are stable in the range and their stability is affected by said parameters.

Info:

Periodical:
International Journal of Advanced Research in Mathematics (Volume 13)
Pages:
1-16
Citation:
R. Suleiman et al., "Effect of Oblateness of the Secondary up to J4 on L4,5 in the Photogravitaional ER3BP", International Journal of Advanced Research in Mathematics, Vol. 13, pp. 1-16, 2020
Online since:
December 2020
Export:
Distribution:
References:

[1] AbdulRaheem and J. Singh; Combined effects of perturbation, radiation and oblateness on the stability of equilibrium points in the restricted three-body problem, The Astronomical Journal, Volume 131(3), 2006, p.1880 – 1885.

DOI: https://doi.org/10.1086/499300

[2] A. AbdulRaheem and J. Singh; Combined effects of perturbations, radiation and oblateness on the periodic orbits in the restricted three-body problem, Astrophysics and Space Science, Vol. 317, (2008), p.9 – 13. DOI 10.1007/s10509-008-9841-4.

DOI: https://doi.org/10.1007/s10509-008-9841-4

[3] A. Chenciner; Three – Body Problem, Scholarpedia, Volume 2 (10): 2111, 2007,.

DOI: https://doi.org/10.4249/scholarpedia.2111

[4] A. D. Bruno; The restricted 3 – body problem: Periodic Orbits, De Gruyter Expositions in Mathematics 17 series, Berlin, Boston, https://www.degruyter.com/view/products/137385.

[5] A. S. Zimovshcikov, and V. N. Tkhai; Instability of Libration points and Resonance Phenomena in the Photogravitational Elliptic Restricted Three – Body Problem, Solar System Research, Vol. 38 (2004), p.155 – 164. https://doi.org/10.1023/B:sols.0000022826.31475.a7.

DOI: https://doi.org/10.1023/b:sols.0000022826.31475.a7

[6] A. L. Kunitsyn and A. A. Perezhogin: On the stability of triangular libration points of the Photogravitational restricted circular three – body problem, Celestial Mechanics, Vol. 18, (1978), p.395 – 408. DOI: https://doi.org/10.1007/BF01230352.

DOI: https://doi.org/10.1007/bf01230352

[7] A. L. Kunitsyn; The Stability of triangular libration points in the Photogravitational three – body problem, Journal of Applied Mathematics and Mechanics, Vol. 64 (5), (2000), p.757 – 763. DOI: https://doi.org/10.1016/soo21-8928(00)00105-2.

DOI: https://doi.org/10.1016/s0021-8928(00)00105-2

[8] A. L. Kunitsyn; The Stability of Collinear Libration Points in the Photogravitational three – body problem, Journal of Applied Mathematics and Mechanics, Vol. 65 (4), (2001), p.703 – 706. DOI: https://doi.org/10.1016/s0021-8928(01)00075-2.

DOI: https://doi.org/10.1016/s0021-8928(01)00075-2

[9] A. L. Kuntisyn and A. T. Tureshbaev; On the Collinear Libration Points of the Photogravitational Restricted Three – Body Problem, Celestial Mechanics, Vol. 35 (105), (1985), p.105 – 112. DOI: https://doi.org/10.1007/BF01227664.

DOI: https://doi.org/10.1007/bf01227664

[10] A. Massarotti, D. E. Lathman, R. P. Stefnak and J. Fogel; Rotational and Radial Velocities for a sample of 761 HIPPARCOS giants and the role of binarity, The Astronomical Journal, the American Astronomical Society, Vol. 135 (1), (2008), p.209 – 231.

DOI: https://doi.org/10.1088/0004-6256/135/1/209

[11] A. Mugrauer, A. Seifahr, R. Neushauser and T. Mazeh; HD 3651B: the first directly imaged brown dwarf companion of an exoplanet host star, Monthly Notices of the Royal Astronomical Society: Letters, Vol. 373 (1), pp. L31 – L35. DOI: https://doi.org/10.1111/J.1745-3933.2006.00237.X.

DOI: https://doi.org/10.1111/j.1745-3933.2006.00237.x

[12] A. Mittal, I. Ahmad and K. B. Bhatnagar; Periodic orbits in the Photogravitational restricted problem with the smaller primary an oblate body, Astrophysics and Space Science, Vol. 323, (2009), p.65 – 73. DOI: https://doi.org/10.1007/s10509-009-0038-2.

DOI: https://doi.org/10.1007/s10509-009-0038-2

[13] A. Narayan and C. Ramesh; Effects of Photogravitational and Oblateness on the Triangular Lagrangian Points in the Elliptical Restricted Three Body Problem, International Journal of Pure and Applied Mathematics, Vol. 68 (2), (2011a), p.201 – 224.

[14] A. Narayan and C. Ramesh; Stability of Triangular Equilibrium points in Elliptical Restricted Three Body Problem under the effects of Photogravitational and Oblateness of Primaries, International Journal of Pure and Applied Mathematics, Vol. 80 (4), (2011b), p.735 – 754.

DOI: https://doi.org/10.1007/s10509-014-1903-1

[15] A. S. Konopliv, R. S. Park, D. Yuan, S. W. Asmar, Watkins, G. J. Williams, E. Fahnestock, G. Kruizinga, M. Park, D. Streakalov, E. D. Smith and T. M. Zuber; The JPL lunar gravity field of the spherical harmonic degree 66- from the GRAIL primary mission, Journal of Geophysical research: planets, Vol. 118, (2013), p.1415 – 1434.

DOI: https://doi.org/10.1002/jgre.20097

[16] A. Umar and Singh. J; Periods, Eccentricities and axes around L4,5, International Journal of Astronomy and Astrophysics, Vol. 4 (04), (2012), p.668 – 682.

[17] A. Umar and Singh, J; Semi – analytic solutions for the triangular points of double white dwarfs in the Elliptic Restricted three – body problem: Impact of the body's oblateness and the orbital eccentricity, Advances in space Research, Vol. 55 (11), (2015), p.2584 – 2591.

DOI: https://doi.org/10.1016/j.asr.2015.01.042

[18] A. V. Yuschenko, V. F. Gopka, C. Kim, Y. C. Liang, F. A. Musaev and G. A. Galazutdinov; The chemical composition of the mild barium star HD 202109, Astronomy and Astrophysics, Vol. 413 (3), (2004), p.1105 – 1114. DOI: https://doi.org/10.1051/0004-6361:20031596.

DOI: https://doi.org/10.1051/0004-6361:20031596

[19] B. Ishwar, A. Elipe; Secular Solution at Triangular equilibrium points in the generalized Photogravitational restricted three – body problem, Astrophysics and Space Science, Vol. 277 (3), (2001), pp.437-446,.

DOI: https://doi.org/10.1007/s10509-009-0073-z

[20] B. K. Jim; Piscium, Portraits of Stars and their Constellation. University of Illinois (2013).

[21] Cygnus Constellation.: Constellation Guide; A guide to the Night sky, (2016). www.costellation-guide.com.

[22] D. W. Schuerman; The restricted three – body problem including radiation pressure, Astrophysical Journal, Part 1, Vol. 238 (1980), p.337 – 342.

DOI: https://doi.org/10.1086/157989

[23] E. Fred; Procyon, (2011), www.AstroPixels.com.

[24] E. J. Aboulemagd; Existence and stability of triangular points in the restricted three-body problem with numerical application, Astrophysics and Space Science, Vol. 342 (2012), pp.45-53. DOI: https://doi.org/10.1007/s10509-012-1162-y.

DOI: https://doi.org/10.1007/s10509-012-1162-y

[25] F. Szenkovits and Z. Mako; Publications of the Astronomy, Department of EotvosLor and University, Budapest, Vol. 15 (2005), p.221.

[26] G. Renzetti; Satellite orbital precessions caused by the octupolar mass moment of a non – spherical body arbitrarily oriented in space, Journal of Astrophysics and Astronomy, Vol. 34 (4), (2013), p.341 – 348. https://www.ias.ac.in/describe/article/joaa/034/04/0341-0348.

DOI: https://doi.org/10.1007/s12036-013-9186-4

[27] J. B. Holberg, T. D. Oswalt, M. E. Sion, M. A. Barstow and M. R. Burleigh; Where are all the Sirus – like binary systems? Monthly Notices of the Royal Astronomical Society, Vol. 435(3), (2013), p.2077 – 2091. https://doi.org/10.1093/mnras.stt1433.

DOI: https://doi.org/10.1093/mnras/stt1433

[28] J. F. L. Simmons, A. J. C. McDonald and J. C. Brown; The restricted three – body problem with radiation pressure, Celestial Mechanics, Vol. 35 (1985), pp.145-187. https://doi.org/10.1007/BF01227667.

DOI: https://doi.org/10.1007/bf01227667

[29] J. Heimberger, M. Soffel and H. Ruder; Relativistic effects in the motion of artificial satellites: the oblateness of the central body II, Celestial Mechanics and Dynamical Astronomy, Vol. 47 (1989), p.205 – 217. https://doi.org/10.1007/BF00051205.

DOI: https://doi.org/10.1007/bf00051205

[30] J. L. Provencial, H. L. Shipman, D. Koestr, F. Wesemael and P. Bergeron; Procyon G: Outside the IRON BOX, The Astrophysical Journal, Vol. 563 (1), (2008), p.324 – 334.

[31] J. Singh and B. Ishwar; Stability of triangular points in the generalized Photogravitational restricted three – body problem. Bulletin of Astronomy Society of India, Vol. 27 (1999), p.415 – 424. BIBICODE: 1999BASI…27.415s.

[32] J. Singh and J. J. Taura; Effects of Zonal Harmonics and a circular cluster of material points on the stability of triangular points in the R3BP, Astrophysics and Space Science, Vol. 350 (2014), p.127 – 132. https://doi.org/10.1007/s10509-013-1719-4.

DOI: https://doi.org/10.1007/s10509-013-1719-4

[33] J. Singh and A. Umar; Motion in the Photogravitational Elliptic restricted three – body problem under an oblate primary, The Astronomical Journal, Vol. 143 (5), (2012a), 22pages.

DOI: https://doi.org/10.1088/0004-6256/143/5/109

[34] J. Singh and A. Umar; On the Stability of Triangular Equilibrium points in the Elliptic Restricted Three-Body Problem under Radiating and Oblate Primaries, Vol. 341 (2), (2012b), p.349 – 358.

DOI: https://doi.org/10.1007/s10509-012-1109-3

[35] J. Singh; The equilibrium points in the perturbed restricted three-body problem with triaxial and luminous primaries, Astrophysics and Space Science, Vol. 346 (2013), pp.41-50.

DOI: https://doi.org/10.1007/s10509-013-1420-7

[36] J. Singh and A. Umar; On out of Plane, Equilibrium points in the Elliptic Restricted Three – Body Problem with Radiating and Oblate primaries, Astrophysics and Space Science, Vol. 344 (2013), p.13 – 19.

DOI: https://doi.org/10.1007/s10509-012-1292-2

[37] J. Singh and A. Umar; Collinear Equilibrium points in the Elliptic Restricted Three- Body Problem with oblateness and radiation, Advances in Space Research, Vol. 52 (2013), p.1489 – 1496. http://dx.doi.org/10.1016/j.asr.2013.07.027.

DOI: https://doi.org/10.1016/j.asr.2013.07.027

[38] J. Singh and A. Umar; Application of Binary to Axisymmetric Bodies in the Elliptic Restricted Three- Body Problem, Astrophysics and Space Science, Vol. 348 (2013), p.393 – 402.

DOI: https://doi.org/10.1007/s10509-013-1585-0

[39] J. Singh and A. Umar; On Motion around the Collinear Libration Points in the Elliptic Restricted Three – Body Problem with a Bigger Triaxial Primary, New Astronomy, Vol. 29 (2014), p.36 – 41. https://sci-hub.tw/10.1016/j.newast.013.11.003.

DOI: https://doi.org/10.1016/j.newast.2013.11.003

[40] K. L. Luhman, B. M. Patten, M. M. Schuster, J. L. Hora, R. G. Ellis, J. R. Stauffer, S. M. Sonnet, E. Winston, R. A. Gutermuth, S. T. Megaeth, D. E. Backman, T. J. Henry, M. W. Weiner and G. G. Faze; Discovery of two T Dwarf companions with the spritzer telescope, The Astrophysical Journal, The American Astronomical Society, Vol. 654 (2007), p.570 – 579.

DOI: https://doi.org/10.1086/509073

[41] L. Ghezzi, K. Cunha, V. V. Smith, F. X. De Araujo, S.C. Schuler, and R. De La Reza; Stellar parameters and metallicites of stars hosting jovian and Neptunian mass planets: A possible dependence of planetary mass on metallicity. The Astrophysical Journal, Volume 720, (2009), p.1290 – 1302,.

DOI: https://doi.org/10.1088/0004-637x/720/2/1290

[42] L. Iorio; On the possibility of measuring the solar oblateness and some relativistic effects from planetary ranging, Astronomy and Astrophysics, Vol. 433(1), (2005), pp.385-393. https://doi.org/10.1051/0004-6361:20047155.

DOI: https://doi.org/10.1051/0004-6361:20047155

[43] L. Iorio; A note on the evidence of the gravitomagnetic field of mars, Classical and Quantum Gravity, Vol. 23 (17), (2006), p.5451 – 5454.

DOI: https://doi.org/10.1088/0264-9381/23/17/n01

[44] L. Iorio; Dynamical determination of the quadrupole mass moment of a white dwarf, Astrophysics and Space Science, Vol. 310 (1-2), (2007a), p.73 – 76.

DOI: https://doi.org/10.1007/s10509-007-9415-x

[45] L. Iorio; Dyamical constraints on some orbital and physical properties of the WD 0137 – 341A/B binary system, Astrophysics and Space Science, Vol. 312, (3-4), (2007b), pp.337-341. DOI: 10:1007/S10509-007-9701-7.

DOI: https://doi.org/10.1007/s10509-007-9701-7

[46] M. Burleigh, M. Barstow, E. B. Howard and J. Holberg; Resolving Sirus – like binaries with hubble telescope, 12th European White Dwarf Workshop, ASP Conference Series, Shipman and J. Provencal, eds., Vol. 3 x 108 (2000).

[47] M. Gutzwiller; Moon – Earth – Sun: The oldest three – body problem, Reviews of Modern Physics, Vol. 70 (2), (1998), p.589 – 639.

DOI: https://doi.org/10.1103/revmodphys.70.589

[48] M. K. Ammar, S. M, El Shaboury and A . Mohammed; Third order secular solution of the variational equations of motion of a satellite in orbit around a non – spherical planet, Astrophysics and Space Science, Vol. 340 (2012), p.43 – 61.

DOI: https://doi.org/10.1007/s10509-012-1038-1

[49] M. Valtonen, H. Karttunen; The Three- Body Problem, Cambridge University Press, Cambridge, (2006), 356 page. http://dx.doi.org/10.1017/CB09780511616006.

[50] P. Kervvella, P. Thevenin, F. Morel, G. Berthomeil, P. Borde and J. Provost; The diameter and evolutionary state of Procyon A (multi – technique modelling using steroseismic and interfererometric constraints), Astronomy and Astrophysics, Vol. 413 (1), 2004, pp.251-256.

DOI: https://doi.org/10.1051/0004-6361:20031527

[51] R. K. Sharma; The linear stability of the Photogravitational restricted three body problem when the smaller primary is an oblate spheroid, Astrophysics and Space Science, Vol. 135 (1987), p.271 – 281. https://doi.org/10.1007/BF00641562.

DOI: https://doi.org/10.1007/bf00641562

[52] S. K. Sahoo and B. Ishwar; Stability of Collinear equilibrium points in the Generalized Photogravitational Elliptic Restricted three – body problem, Bulletin of Astronomical Society of India, Vol. 28 (2000), p.579 – 586. BIBCODE: 2000BASI...28..579S.

[53] S. Kumar and B. Ishwar; Locations of Collinear Equilibrium points in the Generalized Elliptic Restricted Three-Body Problem. International Journal of Engineering, Science and Technology, Vol. 3 (2), 2011, p.157 – 162. https://www.ajol.info/index.php/ijest/article/viewFile/68143/56233.

DOI: https://doi.org/10.4314/ijest.v3i2.68143

[54] S. Larry; Brightest Star. Earth Sky Communications Incorporations (2013).

[55] T. B. Gerald and K. Braun; Directly determined linear radii and effective temperatures of exoplanet host star, Astrophysics Journal, Vol. 694 (2), (2009), pp.1085-1098.

DOI: https://doi.org/10.1088/0004-637x/694/2/1085

[56] V. G. Szebehely; Theory of orbit, Academic Press, New York, eBook ISBN 9780323143462, (1967), 684 pages. https://www.elsevier.com/books/theory - of - orbit/szebehely/978-0-012-395732-0.

[57] V, Nanboori, N. I. Sudheer, D. Reedy and R. K. Sharma; Effect of Oblateness and Radiation Pressure on Angular Frequencies at Collinear Points, Astrophysics and Space Science, Vol. 318 (2008), p.161 – 168.

DOI: https://doi.org/10.1007/s10509-008-9934-0

[58] V. V. Radzievskii; The restricted problem of three – bodies taking account of light pressure, Astronomicheskii Zhurnal, Vol. 27 (249), p.250 – 256.

[59] X. Hiawen, R. James, M. Sinning, T. K. Mark and M. W. Robert; Interface Coupling and magnetic properties of exchanged-coupled Ni89Fe19/Ir22Mn78 bilayers, Journal of Physics D: Applied Physics, Volume 36 (13), (2003), p.1464 – 1468. https://iopscience.iop.org/article/10.1088/0022-3727/36/13/305/pdf.

[60] Y. A. Chermikov; The Photogravitational Restricted three – body problem, Soviet Astronomy - AJ, Vol. 14 (1), Bibliographic Code: 1970SvA….14..176C, (1970), p.176 – 181.

Show More Hide
Cited By:
This article has no citations.