This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] A. Granata, Asymptotic behaviors of Wronskians and finite asymptotic expansions in the real domain. Part I: scales of regularly- or rapidly-varying functions, International Journal of Advanced Research in Mathematics. 9 (2017) 1-33.
DOI: https://doi.org/10.18052/www.scipress.com/ijarm.9.1[2] C. Krattenthaler, Advanced determinant calculus, Séminaire Lotharingien Combin. 42 (1999) (The Andrews Festschrift,), Article B42q, 67 pp. math.CO/9902004.
[3] C. Krattenthaler, Advanced determinant calculus: A complement, Linear Algebra and its Applications. 411 (2005) 68-166.
DOI: https://doi.org/10.1016/j.laa.2005.06.042[4] A. Granata, The theory of higher-order types of asymptotic variation for differentiable functions. Part I: higher-order regular, smooth and rapid variation, Advances in Pure Mathematics. 6 (2016) 776-816.
DOI: https://doi.org/10.4236/apm.2016.612063[5] N. Bourbaki, Fonctions d'une variable réelle-Théorie élémentaire, Hermann, Paris, (1976).
[6] A. Granata, The theory of higher-order types of asymptotic variation for differentiable functions. Part II: algebraic operations and types of exponential variation, Advances in Pure Mathematics. 6 (2016) 817-867.
DOI: https://doi.org/10.4236/apm.2016.612064[7] L. Mirsky, An introduction to linear algebra, Oxford University Press, (1972).
[8] T. Muir, A treatise on the theory of determinants, Revised and enlarged by W.H. Metzler, Dover Publications, New York, (1960).
[9] S. Karlin, Total Positivity. Vol. I, Stanford University Press, Stanford, California, (1968).
[10] R.C. Brunet, Pyramidal composition rules for Wronskians upon Wronskians, Journal of Mathematical Physics, 16(5) (1975) 1112-1116.
DOI: https://doi.org/10.1063/1.522640