This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] K. Gürlebeck, W. Sprössig, Quaternionic and Clifford calculus for physicists and engineers, John Wiley and Sons, (1997).
[2] V.V. Kravchenko, M. V. Shapiro, Integral representations for spatial models of mathematical physics, Pitman Research Notes in Mathematics, Addison Wesley Longman Inc, (1996).
[3] G. C. Moisil, N. Theodoresco, Functions holomorphes dans l'espace, Mathematica (Cluj). 5 (1931) 142-159.
[4] A.V. Bitsadze, Boundary-Value Problems for Elliptic Equations of the Second Order, Nauka, Moscow, 1966. [in Russian].
[5] R. Fueter, Die Funktionentheorie der Differentialgleichungen ∆u = 0 und ∆∆u = 0 mit vier reellen Variablen, Comment. Math. Helv. 7 (1935) 307-330.
DOI: https://doi.org/10.1007/bf01292723[6] A. Sudbery, Quaternionic analysis, Math. Proc. Camb. Phil. Soc. 85 (1979) 199-225.
DOI: https://doi.org/10.1017/s0305004100055638[7] O.F. Herus, On hyperholomorphic functions of the space variable, Ukr. Math. J. 63(4) (2011) 530-537.
DOI: https://doi.org/10.1007/s11253-011-0521-0[8] O. F. Gerus, M. Shapiro, On the boundary values of a quaternionic generalization of the Cauchytype integral in R2 for rectifiable curves, J. Natural Geometry. 24 (1-2) (2003) 121-136.
[9] B. Schneider, Some properties of a Cauchy-type integral for the Moisil-Theodoresco system of partial differential equations, Ukr. Math. J. 58(1) (2006) 105-112.
DOI: https://doi.org/10.1007/s11253-006-0054-0[10] H. Leutwiler, Modified quaternionic analysis in R3, Complex Variables Theory Appl. 20 (1992) 19-51.
[11] Th. Hempfling, H. Leutwiler, Modified quaternionic analysis in R4, Clifford Algebras and their Appl. in Math. Physics, Aachen: Kluwer, Dordrecht, 1998, pp.227-238.
DOI: https://doi.org/10.1007/978-94-011-5036-1_18[12] S.-L. Eriksson-Bique, A correspondence of hyperholomorphic and monogenic functions in R4, Clifford analysis and its applications, NATO Science Series. 25(2001) 71-80.
DOI: https://doi.org/10.1007/978-94-010-0862-4_7[13] H. Leutwiler, P. Zeilinger, On quaternionic analysis and its modifications, Computational Methods and Function Theory. 4(1) (2004) 159-182.
DOI: https://doi.org/10.1007/bf03321063[14] S.-L. Eriksson, H. Leutwiler, An improved Cauchy formula for hypermonogenic functions, Adv. Appl. Clifford Alg. 19 (2009) 269-282.
DOI: https://doi.org/10.1007/s00006-009-0153-8[15] G. Gentili, D.C. Struppa, A new approach to Cullen-regular functions of a quaternionic variable, Comptes Rendus Mathematique. 342(10) (2006) 741-744.
DOI: https://doi.org/10.1016/j.crma.2006.03.015[16] C.G. Cullen, An integral theorem for analytic intrinsic functions on quaternions, Duke Math. J. 32 (1965) 139-148.
[17] F. Colombo, I. Sabadini, D.C. Struppa, Noncommutative functional calculus: theory and applications of slice hyperholomorphic functions, Progress in Mathematics 289, (2011).
DOI: https://doi.org/10.1007/978-3-0348-0110-2_2[18] G. Gentili, C. Stoppato, D. Struppa, Regular Functions of a Quaternionic Variable, Springer Monographs in Mathematics, (2013).
DOI: https://doi.org/10.1007/978-3-642-33871-7_2[19] D. Alpay, F. Colombo, I. Sabadini, Slice hyperholomorphic Schur analysis, Birkhäuser, (2016).
DOI: https://doi.org/10.1007/978-3-319-42514-6_7[20] F. Colombo, I. Sabadini, D.C. Struppa, Entire slice regular functions, Springer, (2016).
DOI: https://doi.org/10.1007/978-3-319-49265-0_5[21] V.V. Kisil, How many essentially different function theories exist?, Clifford algebras and their application in mathematical physics, Kluwer Academic Publishers, Dordrecht. 94 (1998) 175- 184.
DOI: https://doi.org/10.1007/978-94-011-5036-1_14[22] V.V. Kisil, Analysis in R1,1 or the principal function theory, Complex Variables Theory Appl. 40(2) (1999) 93-118.
[23] V.V. Kisil, Erlangen programme at large: an overview, Advances in Applied Analysis (Eds. S. V. Rogosin, A. A. Koroleva), Birkhäuser Verlag, Basel. 94 (2012) 1-94.
[24] F. Bracks, R. Delange, F. Sommen, Clifford analysis. Research Notes in Mathematics No. 76, Pitman, London, (1982).
[25] K. Gürlebeck, K. Habetha, W. Sprößig, Quaternionic calculus for engineers and physicists, Wiley, Cinchester, (1997).
[26] Yu. Grigor'ev, Three-dimensional quaternionic analogue of the Kolosov-Muskhelishvili formulae, Trends in mathematics (Eds. S. Bernstein, U. Kaehler, I. Sabadini, F. Sommen) Hypercomplex Analysis: New Perspectives and Applications, Birkhäuser, Basel, 2014, pp.145-166.
DOI: https://doi.org/10.1007/978-3-319-08771-9_10[27] Jia-Wei Le et al., Applications of the Clifford algebra valued boundary element method to electromagnetic scattering problems, Engineering Analysis with Boundary Elements. 71 (2016) 140- 150.
DOI: https://doi.org/10.1016/j.enganabound.2016.07.007[28] V. S. Shpakivskyi, T. S. Kuzmenko, On one class of quaternionic mappings, Ukr. Math. J. 68(1) (2016) 127-143.
[29] C. Segre, The real representations of complex elements and extension to bicomplex systems, Math. Ann. 40 (1892) 413-467.
[30] M.E. Luna-Elizarrarás et al., Bicomplex holomorphic functions: the algebra, geometry and analysis of bicomplex numbers, Birkhäuser, (2015).
DOI: https://doi.org/10.1007/978-3-319-24868-4_4[31] V.S. Shpakivskyi, T.S. Kuzmenko, Integral theorems for the quaternionic G-monogenic mappings, An. Şt. Univ. Ovidius Constanţa. 24(2) (2016) 271-281.
DOI: https://doi.org/10.1515/auom-2016-0042[32] T.S. Kuzmenko, Curvilinear integral theorem for G-monogenic mappings in the algebra of complex quaternion, Int. J. Adv. Research Math. 6 (2016) 21-25.
DOI: https://doi.org/10.18052/www.scipress.com/ijarm.6.21[33] T.S. Kuzmenko, V.S. Shpakivskyi, Generalized integral theorems for the quaternionic Gmonogenic mappings, J. Math. Sci. 224(4) (2017) 530-540.
DOI: https://doi.org/10.1007/s10958-017-3433-1[34] T.S. Kuzmenko, Power and Laurent series in the algebra of complex quaternion, Proc. Inst. Math. of the NAS of Ukraine. 12(3) (2015) 164-174. (in Ukrainian).
[35] V.S. Shpakivskyi, T.S. Kuzmenko, On monogenic mappings of a quaternionic variable, J. Math. Sci. 221(5) (2017) 712-726.
DOI: https://doi.org/10.1007/s10958-017-3260-4[36] E. Cartan, Les groupes bilinéares et les systèmes de nombres complexes, Annales de la faculté des sciences de Toulouse. 12(1) (1898) 1-64.
DOI: https://doi.org/10.5802/afst.143[37] B. L. van der Waerden, Algebra [Russian translation], Nauka, Moscow, (1976).
[38] E. Hille, R.S. Phillips, Functional analysis and semi-groups, Inostr. Lit., Moscow, 1962. (in Russian).
[39] S.A. Plaksa, R.P. Pukhtaievych, Monogenic functions in a finite-dimensional semi-simple commutative algebra, An. Şt. Univ. Ovidius Constanţa. 22(1) (2014) 221-235.
DOI: https://doi.org/10.2478/auom-2014-0018[40] Yu. Yu. Trokhimchuk, Continuous mappings and monogeneity conditions. Fizmatgiz, Moscow, 1963. (in Russian).
[41] V.S. Shpakivskyi, Constructive description of monogenic functions in a finite-dimensional commutative associative algebra, Adv. Pure Appl. Math. 7(1) (2016) 63-76.
DOI: https://doi.org/10.1515/apam-2015-0022[42] P.W. Ketchum, Analytic functions of hypercomplex variables, Trans. Amer. Math. Soc. 30 (4) (1928) 641-667.
DOI: https://doi.org/10.1090/s0002-9947-1928-1501452-7[43] E.K. Blum, A theory of analytic functions in Banach algebras, Trans. Amer. Math. Soc. 78 (1955) 343-370.
DOI: https://doi.org/10.1090/s0002-9947-1955-0069405-2[44] B.V. Shabat, Introduction to complex analysis, Part 1. Nauka, Moskow, 1976. (in Russian).
[45] F. Hausdorff, Zur Theorie der Systeme complexer Zahlen, Leipziger Berichte. 52 (1900) 43-61.
[1] T. Kuzmenko, V. Shpakivskyi, "G-monogenic mappings in a three-dimensional noncommutative algebra", Complex Variables and Elliptic Equations, p. 1, 2021
DOI: https://doi.org/10.1080/17476933.2021.1947257